itomath.com

Chapter 1: Algebra (Expansion and Factorisation)

(1A) The distributive law worksheet and textbook only (1B) The product $\left(a+b\right)\left(c+d\right)$ (1C) Difference of two squares (1D) Perfect squares expansion

(1A to 1D) Expansion Review

(1E) Further expansion worksheet and textbook only (1F) Algebraic common factors worksheet and textbook only (1G) Factorising with common factors worksheet and textbook only (1H) Difference of two squares factorisation (1I) Perfect squares factorisation worksheet and textbook only (1J) Expressions with four terms worksheet and textbook only (1K) Factorizing $x^2+bx+c$ (1K) Factorizing $x^2+bx+c$ with common factors (1L) Factorizing $ax^2+bx+c$ (1M) Miscellaneous factorisation worksheet and textbook only

Extension Problems

Simplify $(x-y+z)(x+y-z)-(x+y+z)(x-y-z)$

*hint: expanding everything would take a long time. Can you replace two variables with one variable?

If $a+b=2$ and $ab=-1$, evaluate $(a^2-1)(b^2-1)$.

If $\frac{y}{x}+\frac{x}{y}=3$, evaluate $\frac{2x^2-3xy+2y^2}{x^2+y^2}$.

Evaluate $\frac{2003^2-2001\times2003-2}{2}$ without using a calculator.

If $5x=4y$, evaluate $\frac{x^2+xy+y^2}{x^2-xy+y^2}$.

*Give your answer as an improper fraction in simplest terms.

If $a+b=5$, $c+d=2$ and $ad=bc=1$, evaluate:
a) $ac+bd$
b) $\frac{a}{c}$. Give your answer as an improper fraction in simplest terms.

a)

b)

Factorization Extension Level 1

Fully factorize.

$x^2+x+\frac{1}{4}$

$x^2-\frac{2}{3}x+\frac{1}{9}$

$\left(a-b\right)x-\left(b-a\right)y$

$3\left(x+y\right)^3+27\left(x+y\right)^2$

$\left(a-b\right)^2-9b^2$

$\left(a-1\right)x^2+4\left(1-a\right)y^2$

$\left(3a+2b\right)^2-\left(-4a+b\right)^2$

$\left(a^2+b^2\right)^2-4a^2b^2$

Factorization Extension Level 2

Fully factorize.

$ax^2-\left(a+2\right)x+2$

$x^2-\left(a+1\right)x+a$

$ax^2+\left(2a-1\right)x-2$

$abx^2+\left(a+b\right)x+1$

$ax^2-\left(1+ab\right)x+b$

$abx^2+\left(2a^2-b^2\right)x-2ab$

Factorization Extension Level 3

Fully factorize.

$\left(x+y\right)^2+\left(x+y\right)-2$

$\left(a-b\right)^2-3\left(a-b\right)-10$

$\left(x+y\right)^2-4\left(x-y\right)^2$

$\left(x^2+x\right)^2+3\left(x^2+x\right)-10$

Factorization Extension Level 4

Fully factorize.

$a^2\left(x^2-a^2\right)-b^2\left(x^2-b^2\right)$

$2x^2-xy-y^2-7x+y+6$

$2x^2+xy-6y^2-4x-y+2$

$x^2-y^2-z^2+2yz$

$x-y-x^2+2xy-y^2+2$

$a^2b-2abc-b-ab^2+a-2c$

$x^3-\left(b-1\right)x^2+abx-ab\left(b-1\right)$

$a^2-ab+ac-2bc-2c^2$

$x^3+\left(a+2\right)x^2+\left(2a+1\right)x+a$

$x^3+3x^2y-3y-x$

$a^2b-ab^2-a^2c-ac^2-b^2c+bc^2+2abc$