itomath.com

(31A) Logarithms in base a

Evaluate.

$3^2$

$2^2$

$4^2$

$8^2$

$4^4$

$5^3$

$10^2$

$6^3$

$5^2$

$6^2$

$8^3$

$2^5$

$7^2$

$3^5$

$2^6$

$2^4$

$4^3$

$9^2$

$2^3$

$10^3$

$7^3$

$9^3$

$5^4$

$3^4$

$10^4$

$3^3$

Evaluate.

$\log _{5}25=$

$\log _{9}81=$

$\log10000=$

$\log _{3}9=$

$\log _{6}36=$

$\log _{6}216=$

$\log _{8}8=$

$\log _{4}1=$

$\log _{2}16=$

$\log _{5}1=$

$\log _{2}64=$

$\log _{3}1=$

$\log _{6}1=$

$\log1000=$

$\log _{2}4=$

$\log _{8}64=$

$\log _{3}3=$

$\log _{7}7=$

$\log _{9}9=$

$\log _{2}32=$

$\log _{5}5=$

$\log _{4}16=$

$\log _{6}6=$

$\log _{2}2=$

$\log _{5}625=$

$\log _{4}64=$

$\log100=$

$\log _{9}1=$

$\log _{5}125=$

$\log _{2}8=$

$\log _{3}81=$

$\log _{7}49=$

$\log _{2}1=$

$\log _{4}4=$

$\log _{7}343=$

$\log _{8}512=$

$\log _{4}256=$

$\log _{9}729=$

$\log _{7}1=$

$\log _{8}1=$

$\log _{3}27=$

$\log _{3}243=$

Evaluate. Give your answers as fractions.

$3^{-2}$

$4^{-3}$

$9^{-1}$

$4^{-2}$

$9^{-3}$

$4^{-1}$

$3^{-5}$

$6^{-3}$

$3^{-3}$

$2^{-2}$

$8^{-3}$

$6^{-2}$

$5^{-3}$

$9^{-2}$

$8^{-2}$

$3^{-4}$

$2^0$

$2^{-5}$

$2^{-3}$

$5^{-2}$

$7^{-2}$

$8^{-1}$

$2^{-1}$

$5^0$

$2^{-6}$

$5^{-4}$

$6^0$

$4^{-4}$

$8^0$

$4^0$

$7^0$

$2^{-4}$

$7^{-1}$

$9^0$

$10^{-3}$

$6^{-1}$

$3^0$

$3^{-1}$

$10^{-2}$

$5^{-1}$

$7^{-3}$

$10^{-1}$

Evaluate.

$\log _{4}\frac{1}{256}=$

$\log _{3}\frac{1}{27}=$

$\log _{6}\frac{1}{36}=$

$\log _{2}\frac{1}{2}=$

$\log _{2}1=$

$\log _{2}\frac{1}{16}=$

$\log _{8}1=$

$\log _{6}1=$

$\log _{4}\frac{1}{4}=$

$\log _{5}\frac{1}{5}=$

$\log _{8}\frac{1}{8}=$

$\log _{2}\frac{1}{32}=$

$\log _{9}1=$

$\log _{9}\frac{1}{81}=$

$\log _{4}\frac{1}{16}=$

$\log _{4}1=$

$\log _{6}\frac{1}{216}=$

$\log _{7}1=$

$\log\frac{1}{100}=$

$\log _{4}\frac{1}{64}=$

$\log _{9}\frac{1}{9}=$

$\log _{3}1=$

$\log\frac{1}{10}=$

$\log _{3}\frac{1}{3}=$

$\log _{2}\frac{1}{4}=$

$\log _{5}\frac{1}{125}=$

$\log _{7}\frac{1}{49}=$

$\log _{7}\frac{1}{7}=$

$\log _{2}\frac{1}{8}=$

$\log\frac{1}{1000}=$

$\log _{5}1=$

$\log _{3}\frac{1}{9}=$

$\log _{9}\frac{1}{729}=$

$\log _{5}\frac{1}{625}=$

$\log _{7}\frac{1}{343}=$

$\log _{5}\frac{1}{25}=$

$\log _{3}\frac{1}{81}=$

$\log _{2}\frac{1}{64}=$

$\log _{8}\frac{1}{64}=$

$\log _{8}\frac{1}{512}=$

$\log _{6}\frac{1}{6}=$

$\log1=$

$\log _{3}\frac{1}{243}=$

Evaluate. Give your answers as fractions.

$625^{-\frac{1}{4}}$

$36^{-\frac{1}{2}}$

$32^{\frac{1}{5}}$

$8^{-\frac{1}{3}}$

$343^{\frac{1}{3}}$

$4^{\frac{1}{2}}$

$100^{-\frac{1}{2}}$

$4^{-\frac{1}{2}}$

$81^{-\frac{1}{2}}$

$64^{-\frac{1}{3}}$

$49^{\frac{1}{2}}$

$16^{-\frac{1}{2}}$

$64^{-\frac{1}{2}}$

$243^{\frac{1}{5}}$

$9^{-\frac{1}{2}}$

$8^{\frac{1}{3}}$

$729^{\frac{1}{3}}$

$16^{\frac{1}{2}}$

$16^{\frac{1}{4}}$

$36^{\frac{1}{2}}$

$64^{-\frac{1}{6}}$

$25^{-\frac{1}{2}}$

$512^{\frac{1}{3}}$

$256^{\frac{1}{4}}$

$81^{\frac{1}{4}}$

$64^{\frac{1}{6}}$

$100^{\frac{1}{2}}$

$1000^{-\frac{1}{3}}$

$256^{-\frac{1}{4}}$

$125^{-\frac{1}{3}}$

$64^{\frac{1}{2}}$

$25^{\frac{1}{2}}$

$125^{\frac{1}{3}}$

$1000^{\frac{1}{3}}$

$216^{-\frac{1}{3}}$

$81^{-\frac{1}{4}}$

$343^{-\frac{1}{3}}$

$27^{-\frac{1}{3}}$

$49^{-\frac{1}{2}}$

$81^{\frac{1}{2}}$

$216^{\frac{1}{3}}$

$625^{\frac{1}{4}}$

$729^{-\frac{1}{3}}$

$512^{-\frac{1}{3}}$

$9^{\frac{1}{2}}$

$16^{-\frac{1}{4}}$

$64^{\frac{1}{3}}$

$243^{-\frac{1}{5}}$

$32^{-\frac{1}{5}}$

$27^{\frac{1}{3}}$

Evaluate. Give your answers as fractions.

$\log_{729}9$

$\log_{8}2$

$\log_{512}8$

$\log_{625}\frac{1}{5}$

$\log_{1000}\frac{1}{10}$

$\log_{625}5$

$\log_{64}\frac{1}{4}$

$\log_{81}\frac{1}{9}$

$\log_{25}5$

$\log_{512}\frac{1}{8}$

$\log_{16}\frac{1}{2}$

$\log_{100}10$

$\log_{64}8$

$\log_{81}3$

$\log_{16}\frac{1}{4}$

$\log_{125}\frac{1}{5}$

$\log_{32}\frac{1}{2}$

$\log_{729}\frac{1}{9}$

$\log_{16}4$

$\log_{343}7$

$\log_{27}\frac{1}{3}$

$\log_{216}\frac{1}{6}$

$\log_{36}6$

$\log_{1000}10$

$\log_{32}2$

$\log_{100}\frac{1}{10}$

$\log_{81}\frac{1}{3}$

$\log_{81}9$

$\log_{256}\frac{1}{4}$

$\log_{49}\frac{1}{7}$

$\log_{9}3$

$\log_{36}\frac{1}{6}$

$\log_{9}\frac{1}{3}$

$\log_{343}\frac{1}{7}$

$\log_{243}\frac{1}{3}$

$\log_{125}5$

$\log_{216}6$

$\log_{16}2$

$\log_{49}7$

$\log_{8}\frac{1}{2}$

$\log_{64}\frac{1}{2}$

$\log_{243}3$

$\log_{64}4$

$\log_{4}2$

$\log_{64}\frac{1}{8}$

$\log_{25}\frac{1}{5}$

$\log_{27}3$

$\log_{4}\frac{1}{2}$

$\log_{256}4$

$\log_{64}2$