(1.1) Sigma Notation
Sigma Notation
a)
Write the first 5 terms of the sequence with $u_n=2n+1$.
Separate the terms with commas.
A series is a sum of the terms in a sequence.
Examples using sigma notation:
$\displaystyle \sum_{\color{red}{n=1}}^\color{blue}{5} 2n+1=\underset{\color{red}{n=1}}3+\underset{n=2}5+\underset{n=3}7+\underset{n=4}9+\underset{\color{blue}{n=5}}{11}=35$
$\displaystyle \sum_{\color{red}{n=1}}^\color{blue}{4} 2n+1=\underset{\color{red}{n=1}}3+\underset{n=2}5+\underset{n=3}7+\underset{\color{blue}{n=4}}9=24$
$\displaystyle \sum_{\color{red}{n=3}}^\color{blue}{5} 2n+1=\underset{\color{red}{n=3}}7+\underset{n=4}9+\underset{\color{blue}{n=5}}{11}=27$
For each of the following series in sigma notation, write the terms as a sum.
For example:
$\displaystyle \sum_{n=2}^5 2n+1=5+7+9+11$
a)
$\displaystyle \sum_{n=1}^3 2n+1=$
b)
$\displaystyle \sum_{n=3}^6 2n+1=$
c)
$\displaystyle \sum_{n=1}^4 7n-4=$
d)
$\displaystyle \sum_{n=1}^5 -3n+8=$
e)
$\displaystyle \sum_{n=1}^5 1-\frac{2}{7}n=$
*Write each term as a fraction
f)
$\displaystyle \sum_{n=1}^4 2^n=$
g)
$\displaystyle \sum_{n=1}^5 (-3)^{n-1}=$
h)
$\displaystyle \sum_{n=3}^8 64\left(\frac{1}{2}\right)^{n-1}=$
i)
$\displaystyle \sum_{n=2}^6 -n\left(n-1\right)=$
Use your calculator to calculate the following sums.
On the TI-Nspire CX, press then
a)
$\displaystyle \sum_{n=1}^{50} 2n+1=$
b)
$\displaystyle \sum_{n=1}^{100} n=$
c)
$\displaystyle \sum_{n=1}^{24} 1-\frac{2}{3}n=$
d)
$\displaystyle \sum_{n=1}^{15} (-3)^{n-1}=$