itomath.com

Unit 2: Functions

(2.1) What is a Function? (2.2) Function Notation (2.4) Domain and Range given the Graph (2.4) Domain and Range given the Function worksheet and textbook only (2.5) Composite Functions (2.5) Domain and Range of Composite Functions (2.6) Inverse Functions (2.6) Graphs of Inverse Functions worksheet and textbook only

Extension Problems

State the domain for the following function. $$f\left(x\right)=\frac{1}{1-\frac{1}{1+\frac{1}{1-\frac{1}{1-\frac{1}{x+1}}}}}$$ Domain: $\bigl\{x|x\ne$ $,x\in \mathbb{R}\bigl\}$

For $\displaystyle f\left(x\right)=\frac{3x+a}{x+b}, f^{-1}\left(1\right)=3$ and $f^{-1}\left(-7\right)=-1$. Find the values of $a$ and $b$.

$a=$ $, b=$

Let $\displaystyle f\left(x\right)=\frac{ax+b}{cx-d}\; \left(d\ne 0\right)$ and $\displaystyle g\left(x\right)=\frac{-2x+3}{x-1}$. If $f\left(g\left(x\right)\right)=x$, find $f\left(x\right)$.

$f\left(x\right)=$

For $f\left(x\right)=2ax-5a^2$, find the value(s) of $a$ such that $f^{-1}\left(x\right)=f\left(x\right)$.

$a=$