Ito | Mathematics
(2.6) Inverse Functions
Consider the following function.
Click on the arrows or use the left and right keys
Previous
Next
When the temperature of water is decreased, it turns into
Check
The inverse of $f(x)$ is the function that turns the output of $f(x)$ into the input of $f(x)$.
Click on the arrows or use the left and right keys
Previous
Next
To turn the ice back into water, the temperature of the ice must be
Check
The inverse of $f\left(x\right)$ is denoted $f^{-1}\left(x\right)$.
The diagram illustrates $f^{-1}(f($ $))$
Click on the arrows or use the left and right keys
Previous
Next
For all functions that have inverses, $f^{-1}\left(f\left(x\right)\right)=$
Check
What happens if we reverse the order? The diagram illustrates $f(f^{-1}($ $))$
Click on the arrows or use the left and right keys
Previous
Next
For all functions that have inverses, $f\left(f^{-1}\left(x\right)\right)=$
Check
$f^{-1}\left(x\right)$ as a Mapping Diagram
Click on the arrows or use the left and right keys
Previous
Next
For this example, $f\left(x\right)=$
Check
For this example, $f^{-1}\left(x\right)=$
Check
Example 1
Click on the arrows or use the left and right keys
Previous
Next
If $f\left(x\right)=3x$, $f^{-1}\left(x\right)=$
Check
Example 2
Click on the arrows or use the left and right keys
Previous
Next
If $f\left(x\right)=2x-1$, $f^{-1}\left(x\right)=$
Check
Finding $f^{-1}\left(x\right)$ Algebraically
$f^{-1}\left(x\right)$ can be found by:
Step 1. Rewriting $f\left(x\right)$ as $y$.
Step 2. Interchanging $x$ and $y$.
Step 3. Solving for $y$. This is $f^{-1}\left(x\right)$.
$$\begin{align}
\class{Step0}{f\left(x\right) \;}&\class{Step0}{= 2x-1}\\
\class{Step1}{
y \;}&\class{Step1}{= 2x-1}\\
\class{Step2}{
\color{red}{x} \;}&\class{Step2}{= 2\color{red}{y} -1 \;}&&\class{Step2}{ \color{red}{\text{variable interchange}} }\\
\class{Step3}{
x+1 \;}&\class{Step3}{= 2y}\\
\class{Step4}{
\frac{x+1}{2} \;}&\class{Step4}{= y\;}\end{align}$$
so, $f^{-1}\left(x\right)=$
Check
Practice
Find the inverse function, $f^{-1}\left(x\right)$, for:
$f\left(x\right)=4x+5,\quad f^{-1}\left(x\right)=$
Check
$f\left(x\right)=1-\frac{1}{2}x,\quad f^{-1}\left(x\right)=$
Check
$f\left(x\right)=\sqrt{1-x},\quad f^{-1}\left(x\right)=$
Check
$f\left(x\right)=\frac{2}{x+1},\quad f^{-1}\left(x\right)=$
Check