(28A) Rational exponents
Evaluate. Give your answers as fractions.
$32^{\frac{1}{5}}$
$9^{-\frac{1}{2}}$
$81^{-\frac{1}{4}}$
$64^{\frac{1}{6}}$
$16^{-\frac{1}{4}}$
$49^{-\frac{1}{2}}$
$729^{-\frac{1}{3}}$
$243^{\frac{1}{5}}$
$25^{-\frac{1}{2}}$
$216^{-\frac{1}{3}}$
$81^{\frac{1}{4}}$
$4^{-\frac{1}{2}}$
$36^{-\frac{1}{2}}$
$27^{\frac{1}{3}}$
$512^{-\frac{1}{3}}$
$8^{\frac{1}{3}}$
$81^{\frac{1}{2}}$
$49^{\frac{1}{2}}$
$16^{-\frac{1}{2}}$
$9^{\frac{1}{2}}$
$81^{-\frac{1}{2}}$
$16^{\frac{1}{2}}$
$625^{\frac{1}{4}}$
$64^{\frac{1}{3}}$
Evaluate. Give your answers as fractions.
$\left(\frac{1}{64}\right)^{-\frac{2}{3}}=$
$\left(\frac{64}{729}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{1000}\right)^{\frac{1}{3}}=$
$\left(\frac{49}{64}\right)^{\frac{1}{2}}=$
$\left(\frac{25}{9}\right)^{-\frac{1}{2}}=$
$\left(\frac{729}{125}\right)^{-\frac{2}{3}}=$
$\left(\frac{729}{8}\right)^{\frac{1}{3}}=$
$\left(\frac{25}{81}\right)^{-\frac{1}{2}}=$
$\left(\frac{8}{343}\right)^{-\frac{1}{3}}=$
$\left(\frac{25}{64}\right)^{\frac{1}{2}}=$
$\left(\frac{1}{343}\right)^{\frac{2}{3}}=$
$\left(\frac{125}{8}\right)^{-\frac{2}{3}}=$
$\left(\frac{64}{125}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{729}\right)^{\frac{2}{3}}=$
$\left(\frac{343}{8}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{32}\right)^{\frac{4}{5}}=$
$\left(\frac{49}{81}\right)^{\frac{1}{2}}=$
$\left(\frac{1}{216}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{25}\right)^{-\frac{1}{2}}=$
$\left(\frac{1}{729}\right)^{-\frac{2}{3}}=$
$\left(\frac{64}{25}\right)^{\frac{1}{2}}=$
Exercises
(28A on P.567) #1-2 all; #3cdg, #4 all