itomath.com

(4.2) Transforming the Reciprocal Function

Vertically Stretching $f\left(x\right)=\frac{1}{x}$

$f\left(x\right)=\frac{1}{x}$ is stretched vertically by a scale factor of $k$.

Find the equation of the new function when $k=2$.$\qquad p\left(x\right)=$

Find the equation of the new function when $k=3$.$\qquad q\left(x\right)=$

Find the equation of the new function when $k=4$.$\qquad r\left(x\right)=$

Write down the equation of the vertical asymptote of $f\left(x\right)=\frac{k}{x}$ where $k\ne0$ is a constant.

Write down the equation of the horizontal asymptote of $f\left(x\right)=\frac{k}{x}$ where $k\ne0$ is a constant.
The domain of $f\left(x\right)=\frac{k}{x}$ where $k \ne 0$ is a constant is $x\ne$ $, x\in$ .
The range of $f\left(x\right)=\frac{k}{x}$ where $k \ne 0$ is a constant is $y\ne$ $, y\in$ .

Reflecting $f\left(x\right)=\frac{1}{x}$ in the $x$-axis

$f\left(x\right)=\frac{1}{x}$ is reflected in the $x$-axis.

Find the equation of the new function.$\qquad h\left(x\right)=$

Write down the equation of the vertical asymptote of $h\left(x\right)$.

Write down the equation of the horizontal asymptote of $h\left(x\right)$.
The domain of $h\left(x\right)=-\frac{1}{x}$ is $x\ne$ $, x\in$ .
The range of $h\left(x\right)=-\frac{1}{x}$ is $y\ne$ $, y\in$ .

Translating $f\left(x\right)=\frac{1}{x}$

$f\left(x\right)=\frac{1}{x}$ is translated by the vector $\binom{-2}{3}$.

Find the equation of the new function.$\qquad g\left(x\right)=$

Write down the equation of the vertical asymptote of $g\left(x\right)$.

Write down the equation of the horizontal asymptote of $g\left(x\right)$.
The domain of $g\left(x\right)=\frac{1}{x+2}+3$ is $x\ne$ $, x\in$ .
The range of $g\left(x\right)=\frac{1}{x+2}+3$ is $y\ne$ $, y\in$ .

Transforming $f\left(x\right)=\frac{1}{x}$

$f\left(x\right)=\frac{1}{x}$ is stretched vertically by scale factor 2, then reflected in the $x$-axis, then translated by the vector $\binom{-2}{3}$.

Find the equation of the new function.$\qquad t\left(x\right)=$

Write down the equation of the vertical asymptote of $t\left(x\right)$.

Write down the equation of the horizontal asymptote of $t\left(x\right)$.
The domain of $t\left(x\right)=-\frac{2}{x+2}+3$ is $x\ne$ $, x\in$ .
The range of $t\left(x\right)=-\frac{2}{x+2}+3$ is $y\ne$ $, y\in$ .

Practice

Find the equation of the horizontal asymptote for each of the following functions.

$f\left(x\right)=\frac{1}{x-3}+4$

$g\left(x\right)=\frac{3}{x}-2$

$h\left(x\right)=-\frac{2}{x+5}$

$j\left(x\right)=-\frac{1}{x-2}+6$

$k\left(x\right)=4+\frac{1}{x-3}$

$l\left(x\right)=6-\frac{1}{x-2}$

Practice

Find the equation of the vertical asymptote for each of the following functions.

$f\left(x\right)=\frac{1}{x-3}+4$

$g\left(x\right)=\frac{3}{x}-2$

$h\left(x\right)=-\frac{2}{x+5}$

$j\left(x\right)=-\frac{1}{x-2}+6$

$k\left(x\right)=4+\frac{1}{x-3}$

$l\left(x\right)=6-\frac{1}{x-2}$

$m\left(x\right)=\frac{1}{2x-2}$

$n\left(x\right)=\frac{1}{3x+6}$

$p\left(x\right)=\frac{1}{4x-12}$

$q\left(x\right)=\frac{1}{5-x}$

$r\left(x\right)=\frac{1}{2x-2}+3$

$s\left(x\right)=\frac{2}{3x+6}$

$v\left(x\right)=-\frac{3}{4x-12}+5$

$w\left(x\right)=4-\frac{3}{5-x}$