itomath.com

(9.2) What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$


Evaluate.

$\log _{4}16=$

$\log _{6}1=$

$\log _{5}5=$

$\log _{8}8=$

$\log1000=$

$\log _{2}1=$

$\log _{5}1=$

$\log _{4}1=$

$\log10000=$

$\log _{7}7=$

$\log _{6}6=$

$\log _{3}243=$

$\log _{9}1=$

$\log _{3}3=$

$\log _{7}1=$

$\log _{5}25=$

$\log _{2}16=$

$\log _{2}4=$

$\log _{4}4=$

$\log _{3}81=$

$\log _{9}729=$

$\log _{8}64=$

$\log _{9}9=$

$\log _{7}49=$

Evaluate. Give your answers as fractions.

$5^{-1}$

$5^{-2}$

$5^{-3}$

$10^{-3}$

$8^{-1}$

$2^0$

$4^{-4}$

$2^{-2}$

Evaluate.

$\log _{8}\frac{1}{64}=$

$\log _{2}\frac{1}{32}=$

$\log _{3}\frac{1}{243}=$

$\log _{5}1=$

$\log _{4}1=$

$\log _{6}1=$

$\log _{6}\frac{1}{216}=$

$\log _{5}\frac{1}{125}=$

$\log _{4}\frac{1}{16}=$

$\log _{2}\frac{1}{4}=$

$\log _{3}\frac{1}{3}=$

$\log _{4}\frac{1}{4}=$

$\log _{7}\frac{1}{49}=$

$\log _{2}\frac{1}{2}=$

$\log1=$

Evaluate. Give your answers as fractions.

$729^{\frac{1}{3}}$

$243^{-\frac{1}{5}}$

$512^{\frac{1}{3}}$

$16^{\frac{1}{4}}$

$32^{-\frac{1}{5}}$

$81^{\frac{1}{4}}$

$36^{-\frac{1}{2}}$

$49^{-\frac{1}{2}}$

Evaluate. Give your answers as fractions.

$\log_{64}8$

$\log_{625}5$

$\log_{8}2$

$\log_{1000}10$

$\log_{8}\frac{1}{2}$

$\log_{343}7$

$\log_{25}5$

$\log_{256}4$

$\log_{27}3$

$\log_{36}\frac{1}{6}$

$\log_{100}10$

$\log_{64}\frac{1}{8}$

$\log_{9}3$

$\log_{81}3$

$\log_{64}\frac{1}{4}$