(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log100=$
$\log _{5}1=$
$\log _{8}8=$
$\log _{7}7=$
$\log _{3}1=$
$\log _{7}1=$
$\log _{2}16=$
$\log _{7}49=$
$\log _{2}64=$
$\log _{4}1=$
$\log _{9}729=$
$\log _{2}4=$
$\log _{4}16=$
$\log _{3}27=$
$\log _{5}625=$
$\log _{2}1=$
$\log _{3}9=$
$\log _{5}25=$
$\log _{8}64=$
$\log _{6}36=$
$\log1000=$
$\log _{9}1=$
$\log _{4}4=$
$\log _{2}2=$
Evaluate. Give your answers as fractions.
$6^{-3}$
$2^{-3}$
$4^{-4}$
$3^{-3}$
$8^{-1}$
$9^{-3}$
$9^{-1}$
$10^{-3}$
Evaluate.
$\log _{8}\frac{1}{8}=$
$\log _{3}\frac{1}{27}=$
$\log _{4}\frac{1}{64}=$
$\log _{3}\frac{1}{9}=$
$\log _{9}\frac{1}{9}=$
$\log1=$
$\log _{2}\frac{1}{8}=$
$\log _{9}\frac{1}{729}=$
$\log _{7}\frac{1}{343}=$
$\log _{2}\frac{1}{4}=$
$\log _{4}\frac{1}{256}=$
$\log _{7}1=$
$\log _{5}1=$
$\log _{2}\frac{1}{2}=$
$\log _{3}\frac{1}{243}=$
Evaluate. Give your answers as fractions.
$100^{-\frac{1}{2}}$
$25^{-\frac{1}{2}}$
$729^{-\frac{1}{3}}$
$216^{-\frac{1}{3}}$
$625^{-\frac{1}{4}}$
$32^{-\frac{1}{5}}$
$64^{-\frac{1}{6}}$
$729^{\frac{1}{3}}$
Evaluate. Give your answers as fractions.
$\log_{8}2$
$\log_{16}\frac{1}{2}$
$\log_{4}\frac{1}{2}$
$\log_{243}\frac{1}{3}$
$\log_{64}\frac{1}{8}$
$\log_{25}5$
$\log_{64}\frac{1}{4}$
$\log_{27}3$
$\log_{81}\frac{1}{3}$
$\log_{625}\frac{1}{5}$
$\log_{125}\frac{1}{5}$
$\log_{64}\frac{1}{2}$
$\log_{343}7$
$\log_{27}\frac{1}{3}$
$\log_{8}\frac{1}{2}$