itomath.com

(9.2) What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$


Evaluate.

$\log _{2}4=$

$\log _{2}8=$

$\log _{4}256=$

$\log _{4}1=$

$\log _{3}243=$

$\log _{9}1=$

$\log _{2}1=$

$\log _{7}343=$

$\log _{4}16=$

$\log _{5}25=$

$\log10000=$

$\log _{8}512=$

$\log _{2}64=$

$\log _{6}36=$

$\log _{5}125=$

$\log _{3}81=$

$\log _{8}8=$

$\log _{9}81=$

$\log _{9}9=$

$\log _{7}1=$

$\log _{6}216=$

$\log _{4}64=$

$\log1000=$

$\log _{7}49=$

Evaluate. Give your answers as fractions.

$5^{-4}$

$6^{-2}$

$9^{-1}$

$8^{-2}$

$3^{-1}$

$10^{-2}$

$9^{-3}$

$7^{-3}$

Evaluate.

$\log _{7}1=$

$\log\frac{1}{100}=$

$\log _{2}\frac{1}{4}=$

$\log _{5}\frac{1}{625}=$

$\log _{3}1=$

$\log _{5}1=$

$\log _{2}\frac{1}{64}=$

$\log1=$

$\log _{5}\frac{1}{125}=$

$\log _{2}\frac{1}{32}=$

$\log _{8}\frac{1}{64}=$

$\log _{9}\frac{1}{729}=$

$\log _{4}\frac{1}{16}=$

$\log _{8}\frac{1}{512}=$

$\log _{8}1=$

Evaluate. Give your answers as fractions.

$16^{\frac{1}{4}}$

$729^{-\frac{1}{3}}$

$27^{\frac{1}{3}}$

$125^{-\frac{1}{3}}$

$625^{\frac{1}{4}}$

$81^{\frac{1}{2}}$

$64^{\frac{1}{3}}$

$243^{-\frac{1}{5}}$

Evaluate. Give your answers as fractions.

$\log_{243}3$

$\log_{512}8$

$\log_{81}3$

$\log_{49}\frac{1}{7}$

$\log_{36}\frac{1}{6}$

$\log_{125}\frac{1}{5}$

$\log_{9}3$

$\log_{8}\frac{1}{2}$

$\log_{100}10$

$\log_{32}\frac{1}{2}$

$\log_{16}2$

$\log_{729}\frac{1}{9}$

$\log_{64}2$

$\log_{16}4$

$\log_{125}5$