(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{4}16=$
$\log _{6}1=$
$\log _{5}5=$
$\log _{8}8=$
$\log1000=$
$\log _{2}1=$
$\log _{5}1=$
$\log _{4}1=$
$\log10000=$
$\log _{7}7=$
$\log _{6}6=$
$\log _{3}243=$
$\log _{9}1=$
$\log _{3}3=$
$\log _{7}1=$
$\log _{5}25=$
$\log _{2}16=$
$\log _{2}4=$
$\log _{4}4=$
$\log _{3}81=$
$\log _{9}729=$
$\log _{8}64=$
$\log _{9}9=$
$\log _{7}49=$
Evaluate. Give your answers as fractions.
$5^{-1}$
$5^{-2}$
$5^{-3}$
$10^{-3}$
$8^{-1}$
$2^0$
$4^{-4}$
$2^{-2}$
Evaluate.
$\log _{8}\frac{1}{64}=$
$\log _{2}\frac{1}{32}=$
$\log _{3}\frac{1}{243}=$
$\log _{5}1=$
$\log _{4}1=$
$\log _{6}1=$
$\log _{6}\frac{1}{216}=$
$\log _{5}\frac{1}{125}=$
$\log _{4}\frac{1}{16}=$
$\log _{2}\frac{1}{4}=$
$\log _{3}\frac{1}{3}=$
$\log _{4}\frac{1}{4}=$
$\log _{7}\frac{1}{49}=$
$\log _{2}\frac{1}{2}=$
$\log1=$
Evaluate. Give your answers as fractions.
$729^{\frac{1}{3}}$
$243^{-\frac{1}{5}}$
$512^{\frac{1}{3}}$
$16^{\frac{1}{4}}$
$32^{-\frac{1}{5}}$
$81^{\frac{1}{4}}$
$36^{-\frac{1}{2}}$
$49^{-\frac{1}{2}}$
Evaluate. Give your answers as fractions.
$\log_{64}8$
$\log_{625}5$
$\log_{8}2$
$\log_{1000}10$
$\log_{8}\frac{1}{2}$
$\log_{343}7$
$\log_{25}5$
$\log_{256}4$
$\log_{27}3$
$\log_{36}\frac{1}{6}$
$\log_{100}10$
$\log_{64}\frac{1}{8}$
$\log_{9}3$
$\log_{81}3$
$\log_{64}\frac{1}{4}$