itomath.com

(9.2) What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$


Evaluate.

$\log100=$

$\log _{5}1=$

$\log _{8}8=$

$\log _{7}7=$

$\log _{3}1=$

$\log _{7}1=$

$\log _{2}16=$

$\log _{7}49=$

$\log _{2}64=$

$\log _{4}1=$

$\log _{9}729=$

$\log _{2}4=$

$\log _{4}16=$

$\log _{3}27=$

$\log _{5}625=$

$\log _{2}1=$

$\log _{3}9=$

$\log _{5}25=$

$\log _{8}64=$

$\log _{6}36=$

$\log1000=$

$\log _{9}1=$

$\log _{4}4=$

$\log _{2}2=$

Evaluate. Give your answers as fractions.

$6^{-3}$

$2^{-3}$

$4^{-4}$

$3^{-3}$

$8^{-1}$

$9^{-3}$

$9^{-1}$

$10^{-3}$

Evaluate.

$\log _{8}\frac{1}{8}=$

$\log _{3}\frac{1}{27}=$

$\log _{4}\frac{1}{64}=$

$\log _{3}\frac{1}{9}=$

$\log _{9}\frac{1}{9}=$

$\log1=$

$\log _{2}\frac{1}{8}=$

$\log _{9}\frac{1}{729}=$

$\log _{7}\frac{1}{343}=$

$\log _{2}\frac{1}{4}=$

$\log _{4}\frac{1}{256}=$

$\log _{7}1=$

$\log _{5}1=$

$\log _{2}\frac{1}{2}=$

$\log _{3}\frac{1}{243}=$

Evaluate. Give your answers as fractions.

$100^{-\frac{1}{2}}$

$25^{-\frac{1}{2}}$

$729^{-\frac{1}{3}}$

$216^{-\frac{1}{3}}$

$625^{-\frac{1}{4}}$

$32^{-\frac{1}{5}}$

$64^{-\frac{1}{6}}$

$729^{\frac{1}{3}}$

Evaluate. Give your answers as fractions.

$\log_{8}2$

$\log_{16}\frac{1}{2}$

$\log_{4}\frac{1}{2}$

$\log_{243}\frac{1}{3}$

$\log_{64}\frac{1}{8}$

$\log_{25}5$

$\log_{64}\frac{1}{4}$

$\log_{27}3$

$\log_{81}\frac{1}{3}$

$\log_{625}\frac{1}{5}$

$\log_{125}\frac{1}{5}$

$\log_{64}\frac{1}{2}$

$\log_{343}7$

$\log_{27}\frac{1}{3}$

$\log_{8}\frac{1}{2}$