(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{2}4=$
$\log _{2}8=$
$\log _{4}256=$
$\log _{4}1=$
$\log _{3}243=$
$\log _{9}1=$
$\log _{2}1=$
$\log _{7}343=$
$\log _{4}16=$
$\log _{5}25=$
$\log10000=$
$\log _{8}512=$
$\log _{2}64=$
$\log _{6}36=$
$\log _{5}125=$
$\log _{3}81=$
$\log _{8}8=$
$\log _{9}81=$
$\log _{9}9=$
$\log _{7}1=$
$\log _{6}216=$
$\log _{4}64=$
$\log1000=$
$\log _{7}49=$
Evaluate. Give your answers as fractions.
$5^{-4}$
$6^{-2}$
$9^{-1}$
$8^{-2}$
$3^{-1}$
$10^{-2}$
$9^{-3}$
$7^{-3}$
Evaluate.
$\log _{7}1=$
$\log\frac{1}{100}=$
$\log _{2}\frac{1}{4}=$
$\log _{5}\frac{1}{625}=$
$\log _{3}1=$
$\log _{5}1=$
$\log _{2}\frac{1}{64}=$
$\log1=$
$\log _{5}\frac{1}{125}=$
$\log _{2}\frac{1}{32}=$
$\log _{8}\frac{1}{64}=$
$\log _{9}\frac{1}{729}=$
$\log _{4}\frac{1}{16}=$
$\log _{8}\frac{1}{512}=$
$\log _{8}1=$
Evaluate. Give your answers as fractions.
$16^{\frac{1}{4}}$
$729^{-\frac{1}{3}}$
$27^{\frac{1}{3}}$
$125^{-\frac{1}{3}}$
$625^{\frac{1}{4}}$
$81^{\frac{1}{2}}$
$64^{\frac{1}{3}}$
$243^{-\frac{1}{5}}$
Evaluate. Give your answers as fractions.
$\log_{243}3$
$\log_{512}8$
$\log_{81}3$
$\log_{49}\frac{1}{7}$
$\log_{36}\frac{1}{6}$
$\log_{125}\frac{1}{5}$
$\log_{9}3$
$\log_{8}\frac{1}{2}$
$\log_{100}10$
$\log_{32}\frac{1}{2}$
$\log_{16}2$
$\log_{729}\frac{1}{9}$
$\log_{64}2$
$\log_{16}4$
$\log_{125}5$