itomath.com

The Spread of Data

We saw previously that the mean does not always give us an indication of what the data looks like.

Which of the following sets of data have a mean of $5$?

$\begin{matrix} 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \end{matrix}$ 

$\begin{matrix} 3 & 3 & 4 & 4 & 5 & 5 & 5 & 6 & 6 & 7 & 7 \end{matrix}$ 

$\begin{matrix} 0 & 3 & 4 & 4 & 5 & 5 & 5 & 6 & 6 & 7 & 10 \end{matrix}$ 

$\begin{matrix} 1 & 1 & 1 & 3 & 5 & 5 & 5 & 7 & 9 & 9 & 9 \end{matrix}$ 

$\begin{matrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{matrix}$ 

$\begin{matrix} 1 & 1 & 1 & 1 & 1 & 5 & 9 & 9 & 9 & 9 & 9 \end{matrix}$ 

$\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 55 \end{matrix}$  

 
The mean was $5$ for all of the data sets but the spread of the data was very different.
We can measure the spread of data using the , and .

Range

The range looks at the maximum and minimum values of a data set. $$\text{range}=maximum \; value - minimum \; value$$

$\begin{matrix} 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5\phantom{0} \end{matrix}$

$\begin{matrix} 3 & 3 & 4 & 4 & 5 & 5 & 5 & 6 & 6 & 7 & 7\phantom{0} \end{matrix}$

$\begin{matrix} 0 & 3 & 4 & 4 & 5 & 5 & 5 & 6 & 6 & 7 & 10 \end{matrix}$

$\begin{matrix} 1 & 1 & 1 & 3 & 5 & 5 & 5 & 7 & 9 & 9 & 9\phantom{0} \end{matrix}$

$\begin{matrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{matrix}$

$\begin{matrix} 1 & 1 & 1 & 1 & 1 & 5 & 9 & 9 & 9 & 9 & 9\phantom{0} \end{matrix}$

$\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 55 \end{matrix}$
The greater the range, the the data is spread.

Interquartile Range

The interrange looks at the middle values of a data set. $$\text{interquartile range (IQR)}=upper \; quartile \; (Q_3) - lower \; quartile \; (Q_1)$$

$\begin{matrix} 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5\phantom{0} \end{matrix}$

$\begin{matrix} 3 & 3 & 4 & 4 & 5 & 5 & 5 & 6 & 6 & 7 & 7\phantom{0} \end{matrix}$

$\begin{matrix} 0 & 3 & 4 & 4 & 5 & 5 & 5 & 6 & 6 & 7 & 10 \end{matrix}$

$\begin{matrix} 1 & 1 & 1 & 3 & 5 & 5 & 5 & 7 & 9 & 9 & 9\phantom{0} \end{matrix}$

$\begin{matrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{matrix}$

$\begin{matrix} 1 & 1 & 1 & 1 & 1 & 5 & 9 & 9 & 9 & 9 & 9\phantom{0} \end{matrix}$

$\begin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 55 \end{matrix}$
The greater the interquartile range, the the middle of the data is spread.