What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{2}2=$
$\log _{9}9=$
$\log _{5}1=$
$\log _{7}1=$
$\log _{4}64=$
$\log _{7}49=$
$\log100=$
$\log _{5}5=$
$\log _{4}16=$
$\log _{2}4=$
$\log _{6}1=$
$\log _{9}81=$
$\log _{4}4=$
$\log _{7}7=$
$\log _{7}343=$
$\log _{8}1=$
$\log _{3}243=$
$\log _{6}6=$
$\log _{3}81=$
$\log _{5}625=$
$\log _{3}1=$
$\log _{8}8=$
$\log _{3}27=$
$\log _{5}25=$
Evaluate. Give your answers as fractions.
$10^{-2}$
$5^{-4}$
$9^{-3}$
$9^0$
$6^{-2}$
$5^{-3}$
$9^{-2}$
$3^{-3}$
Evaluate.
$\log _{8}\frac{1}{64}=$
$\log _{2}\frac{1}{2}=$
$\log\frac{1}{10}=$
$\log _{5}1=$
$\log _{8}1=$
$\log _{9}1=$
$\log _{2}1=$
$\log _{5}\frac{1}{625}=$
$\log _{3}1=$
$\log _{7}\frac{1}{343}=$
$\log _{8}\frac{1}{8}=$
$\log _{5}\frac{1}{5}=$
$\log _{4}\frac{1}{4}=$
$\log _{6}\frac{1}{216}=$
$\log _{6}\frac{1}{6}=$
$\log _{2}\frac{1}{64}=$
$\log _{9}\frac{1}{81}=$
$\log _{2}\frac{1}{32}=$
Evaluate. Give your answers as fractions.
$64^{-\frac{1}{6}}$
$125^{\frac{1}{3}}$
$512^{-\frac{1}{3}}$
$729^{\frac{1}{3}}$
$4^{\frac{1}{2}}$
$216^{\frac{1}{3}}$
$64^{\frac{1}{6}}$
$625^{-\frac{1}{4}}$
Evaluate. Give your answers as fractions.
$\log_{216}\frac{1}{6}$
$\log_{512}8$
$\log_{9}3$
$\log_{100}10$
$\log_{1000}\frac{1}{10}$
$\log_{81}3$
$\log_{512}\frac{1}{8}$
$\log_{81}\frac{1}{3}$
$\log_{243}3$
$\log_{32}\frac{1}{2}$
$\log_{256}\frac{1}{4}$
$\log_{81}9$
$\log_{625}5$
$\log_{729}9$
$\log_{64}\frac{1}{8}$
$\log_{32}2$
$\log_{1000}10$
$\log_{49}\frac{1}{7}$