What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{9}729=$
$\log1000=$
$\log _{9}9=$
$\log _{4}1=$
$\log _{3}243=$
$\log _{7}1=$
$\log _{2}4=$
$\log _{2}16=$
$\log _{5}1=$
$\log _{6}216=$
$\log _{8}64=$
$\log _{3}27=$
$\log _{5}625=$
$\log _{7}343=$
$\log _{7}49=$
$\log _{6}1=$
$\log _{5}5=$
$\log _{8}512=$
$\log _{7}7=$
$\log _{2}2=$
$\log _{8}8=$
$\log _{6}6=$
$\log10000=$
$\log _{3}1=$
Evaluate. Give your answers as fractions.
$2^{-1}$
$6^{-1}$
$10^{-1}$
$7^{-3}$
$3^{-1}$
$4^{-4}$
$2^{-6}$
$2^{-3}$
Evaluate.
$\log _{7}\frac{1}{343}=$
$\log _{6}\frac{1}{6}=$
$\log _{5}\frac{1}{25}=$
$\log _{2}\frac{1}{4}=$
$\log\frac{1}{1000}=$
$\log _{2}\frac{1}{2}=$
$\log _{6}\frac{1}{36}=$
$\log _{2}\frac{1}{8}=$
$\log _{5}1=$
$\log _{8}\frac{1}{512}=$
$\log _{7}1=$
$\log _{3}\frac{1}{3}=$
$\log _{5}\frac{1}{125}=$
$\log _{6}1=$
$\log _{4}\frac{1}{16}=$
$\log _{3}\frac{1}{27}=$
$\log _{3}\frac{1}{243}=$
$\log _{9}\frac{1}{81}=$
Evaluate. Give your answers as fractions.
$8^{-\frac{1}{3}}$
$64^{\frac{1}{3}}$
$125^{-\frac{1}{3}}$
$216^{\frac{1}{3}}$
$100^{\frac{1}{2}}$
$64^{-\frac{1}{3}}$
$8^{\frac{1}{3}}$
$64^{\frac{1}{6}}$
Evaluate. Give your answers as fractions.
$\log_{1000}10$
$\log_{216}6$
$\log_{100}10$
$\log_{32}\frac{1}{2}$
$\log_{16}2$
$\log_{36}\frac{1}{6}$
$\log_{81}\frac{1}{9}$
$\log_{243}\frac{1}{3}$
$\log_{64}2$
$\log_{27}3$
$\log_{343}7$
$\log_{64}\frac{1}{4}$
$\log_{25}5$
$\log_{216}\frac{1}{6}$
$\log_{9}3$
$\log_{64}8$
$\log_{16}\frac{1}{2}$
$\log_{49}7$