itomath.com

What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$

Evaluate.

$\log _{2}2=$

$\log _{9}9=$

$\log _{5}1=$

$\log _{7}1=$

$\log _{4}64=$

$\log _{7}49=$

$\log100=$

$\log _{5}5=$

$\log _{4}16=$

$\log _{2}4=$

$\log _{6}1=$

$\log _{9}81=$

$\log _{4}4=$

$\log _{7}7=$

$\log _{7}343=$

$\log _{8}1=$

$\log _{3}243=$

$\log _{6}6=$

$\log _{3}81=$

$\log _{5}625=$

$\log _{3}1=$

$\log _{8}8=$

$\log _{3}27=$

$\log _{5}25=$
Evaluate. Give your answers as fractions.

$10^{-2}$

$5^{-4}$

$9^{-3}$

$9^0$

$6^{-2}$

$5^{-3}$

$9^{-2}$

$3^{-3}$

Evaluate.

$\log _{8}\frac{1}{64}=$

$\log _{2}\frac{1}{2}=$

$\log\frac{1}{10}=$

$\log _{5}1=$

$\log _{8}1=$

$\log _{9}1=$

$\log _{2}1=$

$\log _{5}\frac{1}{625}=$

$\log _{3}1=$

$\log _{7}\frac{1}{343}=$

$\log _{8}\frac{1}{8}=$

$\log _{5}\frac{1}{5}=$

$\log _{4}\frac{1}{4}=$

$\log _{6}\frac{1}{216}=$

$\log _{6}\frac{1}{6}=$

$\log _{2}\frac{1}{64}=$

$\log _{9}\frac{1}{81}=$

$\log _{2}\frac{1}{32}=$

Evaluate. Give your answers as fractions.

$64^{-\frac{1}{6}}$

$125^{\frac{1}{3}}$

$512^{-\frac{1}{3}}$

$729^{\frac{1}{3}}$

$4^{\frac{1}{2}}$

$216^{\frac{1}{3}}$

$64^{\frac{1}{6}}$

$625^{-\frac{1}{4}}$

Evaluate. Give your answers as fractions.

$\log_{216}\frac{1}{6}$

$\log_{512}8$

$\log_{9}3$

$\log_{100}10$

$\log_{1000}\frac{1}{10}$

$\log_{81}3$

$\log_{512}\frac{1}{8}$

$\log_{81}\frac{1}{3}$

$\log_{243}3$

$\log_{32}\frac{1}{2}$

$\log_{256}\frac{1}{4}$

$\log_{81}9$

$\log_{625}5$

$\log_{729}9$

$\log_{64}\frac{1}{8}$

$\log_{32}2$

$\log_{1000}10$

$\log_{49}\frac{1}{7}$