itomath.com

What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$

Evaluate.

$\log _{9}729=$

$\log1000=$

$\log _{9}9=$

$\log _{4}1=$

$\log _{3}243=$

$\log _{7}1=$

$\log _{2}4=$

$\log _{2}16=$

$\log _{5}1=$

$\log _{6}216=$

$\log _{8}64=$

$\log _{3}27=$

$\log _{5}625=$

$\log _{7}343=$

$\log _{7}49=$

$\log _{6}1=$

$\log _{5}5=$

$\log _{8}512=$

$\log _{7}7=$

$\log _{2}2=$

$\log _{8}8=$

$\log _{6}6=$

$\log10000=$

$\log _{3}1=$
Evaluate. Give your answers as fractions.

$2^{-1}$

$6^{-1}$

$10^{-1}$

$7^{-3}$

$3^{-1}$

$4^{-4}$

$2^{-6}$

$2^{-3}$

Evaluate.

$\log _{7}\frac{1}{343}=$

$\log _{6}\frac{1}{6}=$

$\log _{5}\frac{1}{25}=$

$\log _{2}\frac{1}{4}=$

$\log\frac{1}{1000}=$

$\log _{2}\frac{1}{2}=$

$\log _{6}\frac{1}{36}=$

$\log _{2}\frac{1}{8}=$

$\log _{5}1=$

$\log _{8}\frac{1}{512}=$

$\log _{7}1=$

$\log _{3}\frac{1}{3}=$

$\log _{5}\frac{1}{125}=$

$\log _{6}1=$

$\log _{4}\frac{1}{16}=$

$\log _{3}\frac{1}{27}=$

$\log _{3}\frac{1}{243}=$

$\log _{9}\frac{1}{81}=$

Evaluate. Give your answers as fractions.

$8^{-\frac{1}{3}}$

$64^{\frac{1}{3}}$

$125^{-\frac{1}{3}}$

$216^{\frac{1}{3}}$

$100^{\frac{1}{2}}$

$64^{-\frac{1}{3}}$

$8^{\frac{1}{3}}$

$64^{\frac{1}{6}}$

Evaluate. Give your answers as fractions.

$\log_{1000}10$

$\log_{216}6$

$\log_{100}10$

$\log_{32}\frac{1}{2}$

$\log_{16}2$

$\log_{36}\frac{1}{6}$

$\log_{81}\frac{1}{9}$

$\log_{243}\frac{1}{3}$

$\log_{64}2$

$\log_{27}3$

$\log_{343}7$

$\log_{64}\frac{1}{4}$

$\log_{25}5$

$\log_{216}\frac{1}{6}$

$\log_{9}3$

$\log_{64}8$

$\log_{16}\frac{1}{2}$

$\log_{49}7$