Consider a function such that $f\left(x+y\right)=cf\left(x\right)f\left(y\right)$ for all real values of $x$ and $y$.
$f$ always outputs positive values, $f\left(0\right)=\frac{1}{2}$ and $f\left(1\right)=2$. Find:
a) $c=$
b) $f\left(3\right)=$
c) $f\left(\frac{3}{4}\right)=$
State the domain for the following function.
$$f\left(x\right)=\frac{1}{1-\frac{1}{1+\frac{1}{1-\frac{1}{1-\frac{1}{x+1}}}}}$$
Domain: $\bigl\{x|x\ne$
$,x\in \mathbb{R}\bigl\}$
For $\displaystyle f\left(x\right)=\frac{3x+a}{x+b}, f^{-1}\left(1\right)=3$ and $f^{-1}\left(-7\right)=-1$. Find the values of $a$ and $b$.
$a=$
$, b=$
Let $\displaystyle f\left(x\right)=\frac{ax+b}{cx-d}\; \left(d\ne 0\right)$ and $\displaystyle g\left(x\right)=\frac{-2x+3}{x-1}$. If $f\left(g\left(x\right)\right)=x$, find $f\left(x\right)$.
$f\left(x\right)=$
For $f\left(x\right)=2ax-5a^2$, find the value(s) of $a$ such that $f^{-1}\left(x\right)=f\left(x\right)$.
$a=$
For $\displaystyle g\left(x\right)=\sqrt{cx+d}, g^{-1}\left(x\right)=\frac{1}{6}x^2-\frac{1}{2}\; \left(x\ge 0\right)$. Find the values of $c$ and $d$.