itomath.com

Rational Functions of the form $f\left(x\right)=\frac{ax+b}{cx+d}$

$y$-intercept

To find the $y$-intercept of a function, we substitute $x=$
Find the coordinates of the $y$-intercept for each of the following functions.
If there is no $y$-intercept, enter "none".
$$f\left(x\right)=\frac{x+2}{x-1}$$ $$j\left(x\right)=\frac{-x+3}{x+3}$$
$$g\left(x\right)=\frac{2x-2}{x+2}$$ $$k\left(x\right)=\frac{-2x+4}{x-1}$$
$$h\left(x\right)=\frac{3x-1}{x+2}$$ $$l\left(x\right)=\frac{-3x+3}{x}$$

$f\left(x\right):$

$g\left(x\right):$

$h\left(x\right):$

$j\left(x\right):$

$k\left(x\right):$

$l\left(x\right):$

$x$-intercept

To find the $x$-intercept of a function, we let the function, for example $f\left(x\right)=$

Find the coordinates of the $x$-intercept for each of the functions above.
If there is no $x$-intercept, enter “none”.

$f\left(x\right):$

$g\left(x\right):$

$h\left(x\right):$

$j\left(x\right):$

$k\left(x\right):$

$l\left(x\right):$

Write down the equation of the vertical asymptote for each of the functions.
$$f\left(x\right)=\frac{x+2}{x-1}$$ $$j\left(x\right)=\frac{-x+3}{x+3}$$
$$g\left(x\right)=\frac{2x-2}{x+2}$$ $$k\left(x\right)=\frac{-2x+4}{x-1}$$
$$h\left(x\right)=\frac{3x-1}{x+2}$$ $$l\left(x\right)=\frac{-3x+3}{x}$$

$f\left(x\right):$

$g\left(x\right):$

$h\left(x\right):$

$j\left(x\right):$

$k\left(x\right):$

$l\left(x\right):$

Write down the equation of the horizontal asymptote for each of the functions.

$f\left(x\right):$

$g\left(x\right):$

$h\left(x\right):$

$j\left(x\right):$

$k\left(x\right):$

$l\left(x\right):$
Look at the equations of the functions and the equations of the vertical and horizontal asymptotes.

The equation of the vertical asymptote for the function $\displaystyle\frac{ax+b}{x+d}$ is $x=$

The equation of the horizontal asymptote for the function $\displaystyle\frac{ax+b}{x+d}$ is $y=$

Write down the equation of the vertical asymptote for each of the functions.
$$p\left(x\right)=\frac{x+3}{2x}$$ $$s\left(x\right)=\frac{2x+1}{3x}$$
$$q\left(x\right)=\frac{x+2}{2x-4}$$ $$t\left(x\right)=\frac{4x-3}{2x+2}$$
$$r\left(x\right)=\frac{-x-1}{3x+6}$$ $$w\left(x\right)=\frac{-4x+6}{3x+2}$$

$p\left(x\right):$

$q\left(x\right):$

$r\left(x\right):$

$s\left(x\right):$

$t\left(x\right):$

$w\left(x\right):$

Write down the equation of the horizontal asymptote for each of the functions.

$p\left(x\right):$

$q\left(x\right):$

$r\left(x\right):$

$s\left(x\right):$

$t\left(x\right):$

$w\left(x\right):$
Look at the equations of the functions and the equations of the vertical and horizontal asymptotes.

The equation of the vertical asymptote for the function $\displaystyle\frac{ax+b}{cx+d}$ is $x=$

The equation of the horizontal asymptote for the function $\displaystyle\frac{ax+b}{cx+d}$ is $y=$