itomath.com

Rules of Differentiation

Differentiation of Constants and Powers of $x$ worksheet and textbook only Chain Rule Product Rule worksheet and textbook only Quotient Rule worksheet and textbook only Differentiating Trigonometric Functions Differentiating Invere Trigonometric Functions Implicit Differentiation

Extension Problems

$g\left(x\right)=ax^2+bx+c$ such that $g\left(0\right)=1, g'\left(1\right)=g\left(1\right)$ and $g'\left(-1\right)=g\left(-1\right)$.
Find the values of $a, b$ and $c$.

$a=$ $b=$ $c=$
For $f\left(x\right)=\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)$, find the value of $f'\left(2\right)$.


$f'\left(2\right)=$ $\left(2\right)$ $+$
If $f'\left(x\right)+f\left(x\right)=x^3+2x^2+5x+4$, find $f\left(x\right)$.

$f\left(x\right)=$
$f\left(x\right)=ax^2+bx-2$ where $a$ and $b$ are constants.
Find the values of $a$ and $b$ if $f\left(f'\left(x\right)\right)=f'\left(f\left(x\right)\right)$

$a=$ $b=$
If $f”\left(x\right)=af\left(x\right)+bf’\left(x\right)$ where $f\left(x\right)=e^{2x}\sin x$, find the values of $a$ and $b$.

If $f(x)=x^3+ax^2+bx+c$ and $\left(x-2\right)f'(x)=3f(x)$, find the values of $a, b$ and $c$.

$a=$

$b=$

$c=$

Find $a>1$ such that $a^x=x$ has one unique solution.

$a=$

For $\displaystyle f(x)=\frac{x^{n+1}}{\left(n+1\right)^2}\Bigl\{\left(n+1\right) \ln (x)-1 \Bigl\}$, find $f'(x)$ in terms of $x$ and $n$.

Find the derivative of:
*If your answer includes logarithms, use $\ln$

a) $x^x \left(x>0\right)$

b) $x^{\ln x} \left(x>0\right)$
If $f”\left(x\right)=af\left(x\right)+bf’\left(x\right)$ where $f\left(x\right)=e^{2x}\sin x$, find the values of $a$ and $b$.

$a=$

$b=$