Expand $x\left(x-4\right)=$
$\quad$ Factorize $x^2-4x=$
$\bigl(x-$
$\bigl)$
Expand $3x\left(x+7\right)=$
$\quad$ Factorize $3x^2+21x=$
$\bigl(x+$
$\bigl)$
Expand $\left(x+1\right)\left(x+2\right)=x^2+$
$x+$
$\quad$ Factorize $x^2+3x+2=\bigl(x+$
$\bigl)\bigl(x+$
$\bigl)$
Expand $\left(x-5\right)\left(x+3\right)=x^2-$
$x-$
$\quad$ Factorize $x^2-2x-15=\bigl(x-$
$\bigl)\bigl(x+$
$\bigl)$
Expand $\left(x-4\right)\left(x-8\right)=x^2-$
$x+$
$\quad$ Factorize $x^2-12x+32=\bigl(x-$
$\bigl)\bigl(x-$
$\bigl)$
Expand $\left(x-3\right)\left(x+3\right)=x^2-$
$\quad$ Factorize $x^2-9=\bigl(x+$
$\bigl)\bigl(x-$
$\bigl)$
Expand $\left(x-6\right)^2=x^2-$
$x+$
$\quad$ Factorize $x^2-12x+36=\bigl(x-$
$\bigl)$
Expand $6\left(x+4\right)\left(x-1\right)=$
$\quad$ Factorize $6x^2+18x-24=$
$\bigl(x+$
$\bigl)\bigl(x-$
$\bigl)$
Expand $5\left(x-5\right)\left(x+5\right)=$
$\quad$ Factorize $5x^2-125=$
$\bigl(x-$
$\bigl)\bigl(x+$
$\bigl)$
Expand $3\left(x-4\right)^2=$
$\quad$ Factorize $3x^2-48=$
$\bigl(x+$
$\bigl)\bigl(x-$
$\bigl)$