Quadratic Equations $ax^2+bx+c=0$
Factorizing $ax^2+bx+c$
Expand $\left(\color{#0275d8}{2x}+\color{#d9534f}{3}\right)\left(\color{#d9534f}{x}+\color{#0275d8}{1}\right)=$
$x^2+$
$\color{#0275d8}{x}+$
$\color{#d9534f}{x}+$
$=$
$x^2+$
$x+$
So, to factorize $2x^2+5x+3$
$\color{#0275d8}{x}$ |
╳ |
|
$\color{#d9534f}{1x}$ |
|
where if you cross multiply and add, you get the middle term $5x$
Therefore, $2x^2+5x+3=\left(2x+3\right)\left(x+1\right)$
Practice
Factorize $3x^2+16x+5$
$x$ |
╳ |
|
$x$ |
|
Therefore, $3x^2+16x+5=$
Factorize $6x^2+13x+6$
Therefore, $6x^2+13x+6=$
Factorize $8x^2+2x-15$
Therefore, $8x^2+2x-15=$
Factorize $-4x^2+19x-12$
Therefore, $-4x^2+19x-12=$
Solve for $x$. If there are multiple answers, separate them with commas. Give answers as simplified fractions and not decimals.
$3x^2+7x+4=0 \qquad x=$
$3x^2+10x+8=0 \qquad x=$
$2x^2-9x+9=0 \qquad x=$
$2x^2-11x+12=0 \qquad x=$
$3x^2-26x+35=0 \qquad x=$
$2x^2+11x-63=0 \qquad x=$
$8x^2+27x+9=0 \qquad x=$
$4x^2-3x-1=0 \qquad x=$
$12x^2-5x-2=0 \qquad x=$
$15x^2-7x-2=0 \qquad x=$
$9x^2+36x+35=0 \qquad x=$
$9x^2+6x-35=0 \qquad x=$