If $21^x=2.1^y=0.01$, find the value of $\frac{1}{x}-\frac{1}{y}$.
If $2\log\left(a-b\right)=\log a+\log b$, find the ratio of $a:b$.
Write your answer in the form $\frac{a+\sqrt{b}}{c}:1$ where $a,b$ and $c$ are integers.
Solve for $x$ in the equation $\displaystyle 5^{x+1}+\frac{4}{5^x}=21$
Find the two values and separate them with a comma. If a value is not an integer, express using logs.
Solve for $x$ in the equation $\displaystyle 3\times 9^x-2\times 4^x=5\times 6^x$
Give your answer in the form $\frac{\log{a}}{\log{b}-\log{c}}$ where $a,b$ and $c$ are integers.
Using the fact that $\log 2 \approx 0.30103\ldots$, find how many digits $2^{1000}$ has.
Solve for $x$ in the equation $6\left(9^x+9^{-x}\right)-35\left(3^x+3^{-x}\right)+62=0$.
Find the four values and separate them with commas. If a value is not an integer, express using logs.
How many integer solutions satisfy the inequality $\displaystyle \frac{\log \left(x-1\right)}{\log 3}+\frac{\log \left(4x-7\right)}{\log 3}\le 3$?
(by Heesoo Jung)
Find the sum of all the prime factors of $N$ if $\displaystyle \log_{3}{\log_{5}{\left(\frac{N}{2}\right)}}=6$
Solve for $x$ in the equation $\displaystyle 8^x+2^x=130$
Hint: once you get a cubic equation, split the middle term and factorize (similar to splitting the middle term for quadratics)
If $a>b>1$ and $\displaystyle \frac{1}{\log_ab}+\frac{1}{\log_ba}=\sqrt{293}$, find the value of $\displaystyle \frac{1}{\log_{ab}{b}}-\frac{1}{\log_{ab}{a}}$.