Rules of Integration
Extension Problems
Integrate. Don’t forget $+c$.
$\displaystyle \int{\sin^2{x} dx}=$
$\displaystyle \int \ln x\ dx=$
$\displaystyle \int x^2e^x\ dx=$
$\displaystyle \int{\frac{1}{x\left(\ln x\right)^2}dx}=$
$\displaystyle \int{\frac{\sin{x}}{\cos^3{x}}dx}=$
$\displaystyle \int{\tan x \;dx}=$
$\displaystyle \int{\frac{4 \ln x}{x(1+\left[\ln x\right]^2)}}dx$
$\displaystyle \int{\sin 2x \cos 3x \;dx}$
$\displaystyle \int{x \arctan x \;dx}$
$\displaystyle \int{\frac{dx}{1+e^{-x}}}$
$\displaystyle \int{\frac{2x^2}{x+1}dx}$
Find $\displaystyle \int{x^3\sqrt{4-x^2}\;dx}$
*use the substitution $u=4-x^2$
Find $\displaystyle \int{x^{-\frac{3}{2}}\sqrt{1-x}}\;dx$
*use the substitution $x=\cos^2{\theta}$