itomath.com

Trigonometric Equations and Identities

Trigonometric Equations worksheet and textbook only Reciprocal Trigonometric Functions worksheet and textbook only Inverse Trigonometric Functions worksheet and textbook only Algebra with Trigonometric Expressions Double Angle Identities Compound Angle Identities

Extension Problems

When $\cos \theta = \tan \theta$, find the exact value of $\sin \theta$
*Write your answer in the form $\frac{a+\sqrt{b}}{c}$ where $a, b$ and $c$ are integers.

Solve for $x$ on the domain $0 \le x \lt 2\pi$.
a) $\sin{x}+\cos{x}=1$
b) $\sin{x}+\sin^2{x}=\cos^2{x}$
c) $2\sin^2{x}+(4-\sqrt{3})\cos{x} -2(1-\sqrt{3})=0$
d) $2\sin^2{\left(\frac{1}{2}x+\frac{\pi }{4}\right)}-\sin{\left(\frac{1}{2}x+\frac{\pi }{4}\right)}-1=0$
e) $\displaystyle\frac{\sin{x}}{1-\cos{x}} – \frac{\sin{x}}{1+\cos{x}} =2$
f) $3\sin^2{x}+2\sqrt{3}\sin{x} \cos{x}-3\cos^2{x}=0$

*For multiple answers, separate with commas. If your answer contains $\pi$, write in the form $\frac{\pi}{b}$ or $\frac{a\pi}{b}$ where $a$ and $b$ are integers. For example: $\frac{\pi}{3}$ or $\frac{5\pi}{6}$ or $2\pi$

a)

b)

c)

d)

e)

f)
For the function $f\left(x\right)=\sin{x}+\cos^2{x}+1$, find the coordinates of the first maximum point and minimum point for $x \ge 0$
Maximum point:
Minimum point:
Find the four values of $\theta$ for $0 \le \theta \lt 2\pi$ that satisfy $\displaystyle\frac{1}{\sin^2\theta}-\frac{1}{\cos^2\theta}-\frac{1}{\tan^2\theta}-\frac{1}{\csc^2\theta}-\frac{1}{\sec^2\theta}-\frac{1}{\cot^2\theta}=-3$
*Separate your answers with commas. If your answer contains $\pi$, write in the form $\frac{\pi}{b}$ or $\frac{a\pi}{b}$ where $a$ and $b$ are integers. For example: $\frac{\pi}{3}$ or $\frac{5\pi}{6}$ or $2\pi$

Find the range of the function $y=\sin^4 x + \cos^2 x$
$\le y \le$

Given $\tan \theta = \frac{3}{4}$, find the value of $\sin 2 \theta$ for $\pi \lt \theta \lt \frac{3}{2} \pi$
*Give your answer as a fraction in simplest terms.

Acute angles $A,B$ and $C$ satisfy the following system of equations:
$$\begin{cases}
\cos A=\tan B \\
\cos B=\tan C \\
\cos C=\tan A
\end{cases}$$
Find the exact value of $\sin^2 A$.

Given that $a \sin{4x}=b \sin{2x}$ and $0 \lt x \lt \frac{\pi}{2}$, express $\sin^2{x}$ in terms of $a$ and $b$.
*Express your answer as a single fraction in simplest terms

In $\Delta ABC$, if the length of $BC$ is twice the length of $AC$, and $\angle A-\angle B=90^\circ$, what is the value of $\tan C$?
*Give your answer as a single fraction in simplest form

Solve for $x$ on the domain $0 \le x \le \pi$.

$\sin{2x}+\sqrt{3}\sin{x}-\sqrt{3}\cos{x} \gt \frac{3}{2}$

$\; \lt x \lt \;$ $\;$ and $\;$ $\; \lt x \le \pi$