itomath.com

Laws of Logarithms

If possible, use the laws of logarithms to simplify and write as a single logarithm or rational number.
If it is not possible, leave it blank.

$\frac{\log{y}}{\log{x}}$

$\log{x}+\log{y}$

$\log{\left(y+3\right)}$

$\log{\left(a+b\right)}$

$\left(\log{5}\right)^2$

$\frac{\log{7}}{\log{3}}$

$\left(\log{x}\right)^p$

$-\log{24}-\log{3}$

$\log{m}-\log{n}$

$\log{a}+\log{b}$

$\log{4}+\log{7}$

$2\log{3}+\log{5}$

$\log{\left(2+x\right)}$

$\log{4}+3\log{2}$

$\log{\left(m-n\right)}$

$\log{2}+\log{3}$

$2\log{3}+3\log{2}$

$\log{p}-\log{q}$

$\log{\left(x-4\right)}$

$\log{\left(x-y\right)}$

$\frac{\log{14}}{\log{2}}$

$\log{56}-\log{8}$

$-\log{x}-\log{y}$

$\log{18}-\log{2}$

$p\log{x}+q\log{y}$

$\frac{\log{25}}{\log{125}}$

$\frac{\log{64}}{\log{16}}$

$-\log{8}-\log{2}$

$\left(\log{3}\right)^2$

$\frac{\log{81}}{\log{27}}$