What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{2}64=$
$\log _{2}4=$
$\log _{3}9=$
$\log _{3}243=$
$\log _{2}16=$
$\log _{7}343=$
$\log _{5}1=$
$\log _{8}64=$
$\log _{5}125=$
$\log _{4}1=$
$\log _{3}1=$
$\log _{9}729=$
$\log _{3}81=$
$\log _{8}1=$
$\log _{4}256=$
$\log _{4}16=$
$\log _{5}5=$
$\log _{9}81=$
$\log _{4}64=$
$\log _{8}512=$
$\log _{9}9=$
$\log _{8}8=$
$\log _{3}27=$
$\log _{7}1=$
Evaluate. Give your answers as fractions.
$6^{-3}$
$5^{-3}$
$9^{-3}$
$5^{-2}$
$7^{-1}$
$3^{-2}$
$5^{-4}$
$7^{-2}$
Evaluate.
$\log _{8}\frac{1}{64}=$
$\log _{8}1=$
$\log _{9}\frac{1}{729}=$
$\log _{5}\frac{1}{25}=$
$\log _{9}\frac{1}{9}=$
$\log _{7}\frac{1}{49}=$
$\log _{9}\frac{1}{81}=$
$\log _{3}\frac{1}{27}=$
$\log _{7}\frac{1}{343}=$
$\log _{2}\frac{1}{2}=$
$\log _{4}\frac{1}{256}=$
$\log _{9}1=$
$\log _{4}1=$
$\log\frac{1}{100}=$
$\log _{3}\frac{1}{9}=$
$\log _{7}\frac{1}{7}=$
$\log _{4}\frac{1}{4}=$
$\log _{2}1=$
Evaluate. Give your answers as fractions.
$25^{-\frac{1}{2}}$
$4^{\frac{1}{2}}$
$8^{\frac{1}{3}}$
$32^{-\frac{1}{5}}$
$243^{\frac{1}{5}}$
$64^{\frac{1}{3}}$
$49^{-\frac{1}{2}}$
$36^{-\frac{1}{2}}$
Evaluate. Give your answers as fractions.
$\log_{32}\frac{1}{2}$
$\log_{1000}10$
$\log_{36}6$
$\log_{625}\frac{1}{5}$
$\log_{512}\frac{1}{8}$
$\log_{4}2$
$\log_{1000}\frac{1}{10}$
$\log_{27}\frac{1}{3}$
$\log_{16}\frac{1}{4}$
$\log_{8}\frac{1}{2}$
$\log_{343}7$
$\log_{32}2$
$\log_{64}\frac{1}{4}$
$\log_{729}\frac{1}{9}$
$\log_{49}7$
$\log_{81}\frac{1}{3}$
$\log_{256}4$
$\log_{36}\frac{1}{6}$