What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{2}1=$
$\log _{8}8=$
$\log _{7}7=$
$\log _{2}2=$
$\log _{3}9=$
$\log _{3}1=$
$\log _{8}1=$
$\log _{2}64=$
$\log _{9}9=$
$\log _{2}16=$
$\log _{3}3=$
$\log _{3}243=$
$\log _{4}16=$
$\log _{5}625=$
$\log _{9}81=$
$\log _{8}512=$
$\log _{5}125=$
$\log _{6}36=$
$\log _{4}1=$
$\log _{4}256=$
$\log _{9}1=$
$\log _{7}343=$
$\log _{4}64=$
$\log _{2}32=$
Evaluate. Give your answers as fractions.
$4^{-4}$
$2^{-6}$
$2^{-4}$
$4^{-1}$
$6^{-1}$
$7^{-1}$
$5^{-3}$
$2^0$
Evaluate.
$\log _{2}\frac{1}{8}=$
$\log _{8}\frac{1}{64}=$
$\log _{3}\frac{1}{27}=$
$\log _{9}\frac{1}{729}=$
$\log _{3}1=$
$\log _{2}1=$
$\log _{9}\frac{1}{9}=$
$\log\frac{1}{100}=$
$\log _{8}1=$
$\log\frac{1}{10}=$
$\log _{3}\frac{1}{9}=$
$\log _{2}\frac{1}{16}=$
$\log _{2}\frac{1}{32}=$
$\log1=$
$\log _{7}1=$
$\log _{2}\frac{1}{2}=$
$\log _{4}1=$
$\log _{5}\frac{1}{5}=$
Evaluate. Give your answers as fractions.
$100^{-\frac{1}{2}}$
$64^{-\frac{1}{2}}$
$9^{\frac{1}{2}}$
$64^{\frac{1}{3}}$
$81^{\frac{1}{4}}$
$81^{-\frac{1}{4}}$
$256^{\frac{1}{4}}$
$64^{\frac{1}{6}}$
Evaluate. Give your answers as fractions.
$\log_{8}2$
$\log_{64}8$
$\log_{243}\frac{1}{3}$
$\log_{729}\frac{1}{9}$
$\log_{64}\frac{1}{4}$
$\log_{125}\frac{1}{5}$
$\log_{64}\frac{1}{2}$
$\log_{64}2$
$\log_{81}9$
$\log_{256}\frac{1}{4}$
$\log_{216}6$
$\log_{25}5$
$\log_{16}4$
$\log_{9}\frac{1}{3}$
$\log_{64}4$
$\log_{256}4$
$\log_{27}\frac{1}{3}$
$\log_{512}\frac{1}{8}$