itomath.com

What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$

Evaluate.

$\log _{3}243=$

$\log _{5}125=$

$\log _{3}9=$

$\log _{2}2=$

$\log _{2}8=$

$\log _{2}32=$

$\log _{5}625=$

$\log _{8}512=$

$\log _{7}343=$

$\log _{4}1=$

$\log _{6}6=$

$\log _{4}256=$

$\log _{9}81=$

$\log _{5}1=$

$\log _{7}7=$

$\log _{3}1=$

$\log _{4}64=$

$\log _{6}36=$

$\log _{5}25=$

$\log _{7}49=$

$\log100=$

$\log _{7}1=$

$\log _{8}8=$

$\log _{9}729=$
Evaluate. Give your answers as fractions.

$2^0$

$5^{-2}$

$8^0$

$9^{-2}$

$10^{-1}$

$4^{-2}$

$5^{-1}$

$6^0$

Evaluate.

$\log _{4}\frac{1}{16}=$

$\log _{8}\frac{1}{8}=$

$\log _{5}\frac{1}{5}=$

$\log _{2}1=$

$\log _{5}\frac{1}{25}=$

$\log _{4}1=$

$\log _{3}\frac{1}{3}=$

$\log _{4}\frac{1}{64}=$

$\log _{7}1=$

$\log _{5}1=$

$\log\frac{1}{10}=$

$\log _{9}\frac{1}{729}=$

$\log _{7}\frac{1}{7}=$

$\log _{7}\frac{1}{49}=$

$\log1=$

$\log _{2}\frac{1}{8}=$

$\log _{6}1=$

$\log _{9}\frac{1}{9}=$

Evaluate. Give your answers as fractions.

$8^{\frac{1}{3}}$

$64^{\frac{1}{6}}$

$343^{-\frac{1}{3}}$

$9^{\frac{1}{2}}$

$16^{\frac{1}{4}}$

$8^{-\frac{1}{3}}$

$729^{-\frac{1}{3}}$

$32^{\frac{1}{5}}$

Evaluate. Give your answers as fractions.

$\log_{27}\frac{1}{3}$

$\log_{64}2$

$\log_{256}4$

$\log_{729}9$

$\log_{32}\frac{1}{2}$

$\log_{343}7$

$\log_{4}2$

$\log_{32}2$

$\log_{64}\frac{1}{2}$

$\log_{125}\frac{1}{5}$

$\log_{100}\frac{1}{10}$

$\log_{216}6$

$\log_{216}\frac{1}{6}$

$\log_{9}3$

$\log_{343}\frac{1}{7}$

$\log_{256}\frac{1}{4}$

$\log_{1000}10$

$\log_{16}4$