itomath.com

What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$

Evaluate.

$\log _{4}64=$

$\log _{7}343=$

$\log _{5}1=$

$\log _{3}81=$

$\log _{2}64=$

$\log _{9}81=$

$\log _{9}9=$

$\log _{5}125=$

$\log _{6}1=$

$\log _{7}1=$

$\log _{8}1=$

$\log _{9}1=$

$\log10000=$

$\log100=$

$\log _{2}4=$

$\log _{2}8=$

$\log _{8}64=$

$\log _{4}16=$

$\log _{4}1=$

$\log _{2}32=$

$\log _{3}1=$

$\log _{3}9=$

$\log _{6}6=$

$\log _{3}27=$
Evaluate. Give your answers as fractions.

$8^{-1}$

$8^0$

$9^{-1}$

$3^{-1}$

$5^{-4}$

$9^0$

$4^{-3}$

$7^{-2}$

Evaluate.

$\log _{8}1=$

$\log _{2}\frac{1}{2}=$

$\log _{4}\frac{1}{64}=$

$\log _{2}\frac{1}{4}=$

$\log _{7}\frac{1}{49}=$

$\log _{3}\frac{1}{27}=$

$\log _{4}\frac{1}{256}=$

$\log _{8}\frac{1}{512}=$

$\log _{7}\frac{1}{7}=$

$\log\frac{1}{1000}=$

$\log _{9}\frac{1}{9}=$

$\log _{3}\frac{1}{9}=$

$\log _{2}\frac{1}{64}=$

$\log _{6}\frac{1}{216}=$

$\log _{4}\frac{1}{4}=$

$\log _{3}1=$

$\log _{2}1=$

$\log _{9}\frac{1}{729}=$

Evaluate. Give your answers as fractions.

$25^{-\frac{1}{2}}$

$27^{\frac{1}{3}}$

$64^{\frac{1}{3}}$

$9^{-\frac{1}{2}}$

$8^{\frac{1}{3}}$

$16^{-\frac{1}{4}}$

$1000^{\frac{1}{3}}$

$25^{\frac{1}{2}}$

Evaluate. Give your answers as fractions.

$\log_{4}\frac{1}{2}$

$\log_{81}3$

$\log_{16}2$

$\log_{125}\frac{1}{5}$

$\log_{729}\frac{1}{9}$

$\log_{32}\frac{1}{2}$

$\log_{625}\frac{1}{5}$

$\log_{25}\frac{1}{5}$

$\log_{512}8$

$\log_{27}\frac{1}{3}$

$\log_{8}\frac{1}{2}$

$\log_{256}\frac{1}{4}$

$\log_{243}\frac{1}{3}$

$\log_{16}4$

$\log_{125}5$

$\log_{49}7$

$\log_{81}9$

$\log_{32}2$