itomath.com

What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$

Evaluate.

$\log _{2}1=$

$\log _{8}8=$

$\log _{7}7=$

$\log _{2}2=$

$\log _{3}9=$

$\log _{3}1=$

$\log _{8}1=$

$\log _{2}64=$

$\log _{9}9=$

$\log _{2}16=$

$\log _{3}3=$

$\log _{3}243=$

$\log _{4}16=$

$\log _{5}625=$

$\log _{9}81=$

$\log _{8}512=$

$\log _{5}125=$

$\log _{6}36=$

$\log _{4}1=$

$\log _{4}256=$

$\log _{9}1=$

$\log _{7}343=$

$\log _{4}64=$

$\log _{2}32=$
Evaluate. Give your answers as fractions.

$4^{-4}$

$2^{-6}$

$2^{-4}$

$4^{-1}$

$6^{-1}$

$7^{-1}$

$5^{-3}$

$2^0$

Evaluate.

$\log _{2}\frac{1}{8}=$

$\log _{8}\frac{1}{64}=$

$\log _{3}\frac{1}{27}=$

$\log _{9}\frac{1}{729}=$

$\log _{3}1=$

$\log _{2}1=$

$\log _{9}\frac{1}{9}=$

$\log\frac{1}{100}=$

$\log _{8}1=$

$\log\frac{1}{10}=$

$\log _{3}\frac{1}{9}=$

$\log _{2}\frac{1}{16}=$

$\log _{2}\frac{1}{32}=$

$\log1=$

$\log _{7}1=$

$\log _{2}\frac{1}{2}=$

$\log _{4}1=$

$\log _{5}\frac{1}{5}=$

Evaluate. Give your answers as fractions.

$100^{-\frac{1}{2}}$

$64^{-\frac{1}{2}}$

$9^{\frac{1}{2}}$

$64^{\frac{1}{3}}$

$81^{\frac{1}{4}}$

$81^{-\frac{1}{4}}$

$256^{\frac{1}{4}}$

$64^{\frac{1}{6}}$

Evaluate. Give your answers as fractions.

$\log_{8}2$

$\log_{64}8$

$\log_{243}\frac{1}{3}$

$\log_{729}\frac{1}{9}$

$\log_{64}\frac{1}{4}$

$\log_{125}\frac{1}{5}$

$\log_{64}\frac{1}{2}$

$\log_{64}2$

$\log_{81}9$

$\log_{256}\frac{1}{4}$

$\log_{216}6$

$\log_{25}5$

$\log_{16}4$

$\log_{9}\frac{1}{3}$

$\log_{64}4$

$\log_{256}4$

$\log_{27}\frac{1}{3}$

$\log_{512}\frac{1}{8}$