itomath.com

Multiplying Polynomials

Multiplying Polynomials

If $P(x)=2x^4-x^2+3$ and $Q(x)=5x^3+4x^2-3x$, then

$P(x)Q(x)=$ $x^7+$ $x^6-$ $x^5-$ $x^4+$ $x^3+$ $x^2-$ $x$

Synthetic Multiplication
$P(x)$ $2$ $0$ $-1$ $0$ $3$ $\longleftarrow$ coefficients of $2x^4-x^2+3$
$Q(x)$ $\times$ $5$ $4$ $-3$ $0$ $\longleftarrow$ coefficients of $5x^3+4x^2-3x$
$0$ $0$ $0$ $0$ $0$ $\longleftarrow$ top row $\times\;$$0$
$-6$ $0$ $3$ $0$ $-9$ $\cdot$ $\longleftarrow$ placeholder then top row $\times\;$$-3$
$\cdot$ $\cdot$ $\longleftarrow$ 2 placeholders then top row $\times\;$$4$
$\cdot$ $\cdot$ $\cdot$ $\longleftarrow$ 3 placeholders then top row $\times\;$$5$
$18$ $-9$ $0$ $\longleftarrow$ sum of the columns

$10$ $8$ $-11$ $-4$ $18$ $12$ $-9$ $0$ are the coefficients of
$x^7$ $x^6$ $x^5$ $x^4$ $x^3$ $x^2$ $x^1$ $x^0$ so

$P(x)Q(x)=$

Expand and simplify:
*Write your answer with descending powers of $x$

$\left(-2x^4+3x^3-4x+5\right)\left(2x^3-x^2-1\right)=$

$\left(2x^2-x+2\right)^2 \left(-x^4+x-3\right)=$