If $P(x)=2x^4-x^2+3$ and $Q(x)=5x^3+4x^2-3x$, then
$P(x)Q(x)=$ $x^7+$ $x^6-$ $x^5-$ $x^4+$ $x^3+$ $x^2-$ $x$
$P(x)$ | $2$ | $0$ | $-1$ | $0$ | $3$ | $\longleftarrow$ coefficients of $2x^4-x^2+3$ | ||
$Q(x)$ | $\times$ | $5$ | $4$ | $-3$ | $0$ | $\longleftarrow$ coefficients of $5x^3+4x^2-3x$ | ||
$0$ | $0$ | $0$ | $0$ | $0$ | $\longleftarrow$ top row $\times\;$$0$ | |||
$-6$ | $0$ | $3$ | $0$ | $-9$ | $\cdot$ | $\longleftarrow$ placeholder then top row $\times\;$$-3$ | ||
$\cdot$ | $\cdot$ | $\longleftarrow$ 2 placeholders then top row $\times\;$$4$ | ||||||
$\cdot$ | $\cdot$ | $\cdot$ | $\longleftarrow$ 3 placeholders then top row $\times\;$$5$ | |||||
$18$ | $-9$ | $0$ | $\longleftarrow$ sum of the columns |
$10$ | $8$ | $-11$ | $-4$ | $18$ | $12$ | $-9$ | $0$ | are the coefficients of |
$x^7$ | $x^6$ | $x^5$ | $x^4$ | $x^3$ | $x^2$ | $x^1$ | $x^0$ | so |
$P(x)Q(x)=$
Expand and simplify:
*Write your answer with descending powers of $x$
$\left(-2x^4+3x^3-4x+5\right)\left(2x^3-x^2-1\right)=$
$\left(2x^2-x+2\right)^2 \left(-x^4+x-3\right)=$