itomath.com

Quadratic Equations $x^2+bx+c=0$

Review of Factorizing

Expand $x\left(x-4\right)=$
$\quad$ Factorize $x^2-4x=$ $\bigl(x-$ $\bigl)$
Expand $3x\left(x+7\right)=$
$\quad$ Factorize $3x^2+21x=$ $\bigl(x+$ $\bigl)$
Expand $\left(x+1\right)\left(x+2\right)=x^2+$ $x+$
$\quad$ Factorize $x^2+3x+2=\bigl(x+$ $\bigl)\bigl(x+$ $\bigl)$
Expand $\left(x-5\right)\left(x+3\right)=x^2-$ $x-$
$\quad$ Factorize $x^2-2x-15=\bigl(x-$ $\bigl)\bigl(x+$ $\bigl)$
Expand $\left(x-4\right)\left(x-8\right)=x^2-$ $x+$
$\quad$ Factorize $x^2-12x+32=\bigl(x-$ $\bigl)\bigl(x-$ $\bigl)$
Expand $\left(x-3\right)\left(x+3\right)=x^2-$
$\quad$ Factorize $x^2-9=\bigl(x+$ $\bigl)\bigl(x-$ $\bigl)$
Expand $\left(x-6\right)^2=x^2-$ $x+$
$\quad$ Factorize $x^2-12x+36=\bigl(x-$ $\bigl)$
Expand $6\left(x+4\right)\left(x-1\right)=$
$\quad$ Factorize $6x^2+18x-24=$ $\bigl(x+$ $\bigl)\bigl(x-$ $\bigl)$
Expand $5\left(x-5\right)\left(x+5\right)=$
$\quad$ Factorize $5x^2-125=$ $\bigl(x-$ $\bigl)\bigl(x+$ $\bigl)$
Expand $3\left(x-4\right)^2=$
$\quad$ Factorize $3x^2-48=$ $\bigl(x+$ $\bigl)\bigl(x-$ $\bigl)$
Fully factorize:
$x^2+4x+4$
$x^2-2x-3$

$-5x^2+25x$
$x^2+4x+3$

$x^2-11x+18$

$x^2+2x-15$
$x^2+4x-5$

$x^2+4x-45$
$-8x^2+8x$

$x^2-7x$
$x^2+12x+32$

$x^2-3x$
$x^2+5x-14$

$x^2-14x+48$
$x^2+5x+6$

$-9x^2-45x$
$x^2-13x+40$

$x^2-x-56$
$x^2-8x+7$

$x^2-3x-28$
$x^2-3x-4$

Solving by Factorizing

Fully factorize. $\qquad x^2-3x+2=$

Solve for $x$.$\qquad x^2-3x+2=0\qquad \qquad x=$

Fully factorize. $\qquad x^2-49=$

Solve for $x$.$\qquad x^2-49=0\qquad \qquad x=$

Fully factorize. $\qquad x^2-8x+16=$

Solve for $x$.$\qquad x^2-8x+16=0\qquad \qquad x=$

Fully factorize. $\qquad x^2+8x=$

Solve for $x$.$\qquad x^2+8x=0\qquad \qquad x=$

Fully factorize. $\qquad 3x^2-3x-60=$

Solve for $x$.$\qquad 3x^2-3x-60=0\qquad \qquad x=$

Fully factorize. $\qquad -2x^2-24x-72=$

Solve for $x$.$\qquad -2x^2-24x-72=0\qquad \qquad x=$

Solve for $x$. If there are multiple answers, separate them with commas.

$x^2-3x=-2\qquad \qquad x=$

$x^2=49\qquad \qquad x=$

$x^2+16=8x\qquad \qquad x=$

$8x=-x^2\qquad \qquad x=$

$3\left(x^2-20\right)=3x\qquad \qquad x=$

$-72=2x\left(x+12\right)\qquad \qquad x=$