itomath.com

Chain Rule

Find $f'(x)$ for each function.

$f(x)=\left(4x+5\right)^3\qquad f'(x)=$

$f(x)=\left(3x^2-x\right)^2\qquad f'(x)=$

$f(x)=\left(\frac{2}{x}+x^3\right)^4\qquad f'(x)=$

$f(x)=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\qquad f'(x)=$

$f(x)=2\left(5x^2-x+7\right)^3\qquad f'(x)=$

$f(x)=-\frac{1}{4}\left(x^3-1\right)^4\qquad f'(x)=$

$f(x)=\left(1-2x\right)^{-5}\qquad f'(x)=$

$\displaystyle f(x)=\frac{4}{\left(3x+1\right)^2}\qquad f'(x)=$

$\displaystyle f(x)=\sqrt{1-2x^3}\qquad f'(x)=$

$f(x)=6\sqrt[3]{4x^2-x}\qquad f'(x)=$

$\displaystyle f(x)=-\frac{4}{\sqrt{x^2+3x+5}}\qquad f'(x)=$