itomath.com
Ito | Mathematics
IGCSE
IB Math AA SL
IB Math AA HL
Challenges
Proof of the Derivative of $e^x$
The derivative of $f\left(x\right)=e^x$ is $\displaystyle f'(x)=e^x$.
To prove this, we will use the following properties:
$\displaystyle f'(x)=\lim \limits_{h \to 0} \frac{f\left(x+h\right)-f\left(x\right)}{h}$
$e^{x}e^{y}=e$
Check
Check
$m \ln x= \ln$
Check
$\displaystyle \lim \limits_{n \to \infty} \left(1+\frac{1}{n}\right)^n=$
Check
Find the derivative of $f\left(x\right)=e^x$ from first principles (1):
$f'(x)=\lim \limits_{h \to 0}$
Check
Use property 2:
$f'(x)=\lim \limits_{h \to 0}$
Check
Factorize $e^x$ and bring outside the limit:
$\displaystyle f'(x)=e^x \lim \limits_{h \to 0}$
Check
Consider the substitution $\displaystyle e^h -1=n$. Then:
$h=$
Check
Also, if $h \rightarrow 0$, then:
$n \rightarrow$
0
1
∞
Check
Substitute $e^h-1$ and $h$ and write in terms of $n$:
$\displaystyle f'(x)=e^x \lim \limits_{n \to 0}$
Check
Multiply the numerator and denominator by $\displaystyle \frac{1}{n}$:
$\displaystyle f'(x)=e^x \lim \limits_{n \to 0}$
Check
Use property 3 in the denominator:
$\displaystyle f'(x)=e^x \lim \limits_{n \to 0}$
Check
Consider the substitution $\displaystyle \frac{1}{n}=m$. Then:
$n=$
Check
Also, if $n \rightarrow 0$, then:
$m \rightarrow$
0
1
∞
Check
Substitute $n$ and $\displaystyle \frac{1}{n}$ and write in terms of $m$:
$\displaystyle f'(x)=e^x \lim \limits_{m \to \infty}$
Check
Use property 4:
$\displaystyle f'(x)=e^x $
$1$
/
$\ln \bigl($
Check
$\bigl)$
Check
Therefore, the derivative of $f\left(x\right)=e^x$ is:
$f'(x)=$
Check