itomath.com

The Unit Circle and Radian Measure

Radian Measure Arc Length and Sector Area worksheet and textbook only The Unit Circle worksheet and textbook only Multiples of $\frac{\pi}{6}$ and $\frac{\pi}{4}$ Pythagorean Identity

Extension Problems

Fill in the blanks so that the multiplication of the rows and columns are correct.

$\frac{5\pi}{6}$ $\times$ $\frac{2\pi}{3}$ $\times$ $0$ $=1$
$\times$ $\times$ $\times$
$\frac{\pi}{6}$ $\times$ $\sin{\frac{\pi}{4}}$ $\times$ $\frac{3\pi}{4}$ $=-\frac{1}{4}$
$\times$ $\times$ $\times$
$\frac{5\pi}{6}$ $\times$ $\frac{\pi}{2}$ $\times$ $\frac{3\pi}{4}$ $=0$
$\parallel$ $\parallel$ $\parallel$
$\frac{1}{4}$ $0$ $-\frac{1}{2}$

Evaluate:

a) $\displaystyle\sin{\left(\frac{\pi}{2}-\theta\right)}+\sin{\left(\pi-\theta\right)}-\cos{\left(\frac{\pi}{2}-\theta\right)}+\cos{\left(\pi-\theta\right)}$

b) $\displaystyle\frac{1-\sin{\left(\pi-\theta\right)}}{1+\sin{\left(\frac{\pi}{2}-\theta\right)}}\times\frac{1-\cos{\left(\pi-\theta\right)}}{1-\cos{\left(\frac{\pi}{2}-\theta\right)}}$

a)

b)

Simplify the following to a single fraction:
$\displaystyle\frac{1-\sin{x}-\cos{x}}{1-\sin{x}+\cos{x}}+\frac{1+\sin{x}+\cos{x}}{1+\sin{x}-\cos{x}}$