itomath.com

Integrating $f\left(ax+b\right)$

Integrate. Don’t forget $+c$.

$\displaystyle \int{5(x+3)^4dx}=$

$\displaystyle \int{(x-2)^5dx}=$

$\displaystyle \int{(4x-5)^7dx}=$

$\displaystyle \int{\left(\frac{1}{8}x+1\right)^3dx}=$

$\displaystyle \int{(4-x)^8dx}=$

$\displaystyle \int{4\left(3-\frac{1}{2}x\right)^6dx}=$

$\displaystyle \int{\sqrt{2x-1}dx}=$

$\displaystyle \int{7\left(2-5x\right)^{\frac{3}{4}}dx}=$

$\displaystyle \int{\frac{6}{\left(4-3x\right)^2}dx}=$

$\displaystyle \int{\frac{1}{\left(2+\frac{x}{3}\right)^{\frac{1}{4}}}dx}=$

$\displaystyle \int{3e^{3x}dx}=$

$\displaystyle \int{e^{2x+5}dx}=$

$\displaystyle \int{e^{\frac{1}{2}x}dx}=$

$\displaystyle \int{4e^{\frac{2x-1}{3}}dx}=$

$\displaystyle \int{-6e^{-3x}dx}=$

$\displaystyle \int{\frac{1}{e^{4x}}dx}=$

$\displaystyle \int{e^{-\frac{2}{3}x}dx}=$

$\displaystyle \int{\frac{-2}{e^{\frac{x}{4}}}dx}=$

$\displaystyle \int{\frac{1}{x+4}dx}=$

$\displaystyle \int{\frac{5}{5x-2}dx}=$

$\displaystyle \int{\frac{2}{3x+4}dx}=$

$\displaystyle \int{\frac{8}{2x-5}dx}=$

$\displaystyle \int{\frac{1}{7-2x}dx}=$

$\displaystyle \int{\frac{-3}{1-4x}dx}=$

$\displaystyle \int{2\cos \left(4x\right)dx}=$

$\displaystyle \int{\sin \left(2-3x\right)dx}=$

$\displaystyle \int{\frac{1}{\cos ^2\left(\frac{1}{3}x+4\right)}dx}=$

$\displaystyle \int{5^{-2x+6}dx}=$

$\displaystyle \int{\frac{1}{\sqrt{1-\left(3x+1\right)^2}}dx}=$

$\displaystyle \int{\frac{1}{9x^2+6x+2}dx}=$

$\displaystyle \int{\frac{1}{4+x^2}dx}=$

*[challenge] $\displaystyle \int{\frac{7}{\sqrt{-\left(7x+5\right)\left(7x+3\right)}}dx}=$