Laws of Logarithms
If possible, use the laws of logarithms to simplify and write as a single logarithm or rational number.
If it is not possible, leave it blank.
$\log{p}-\log{q}$
$\log{\left(y+3\right)}$
$\left(\log{3}\right)^2$
$\frac{\log{14}}{\log{2}}$
$\log{\left(a+b\right)}$
$\left(\log{5}\right)^2$
$-\log{x}-\log{y}$
$\log{18}-\log{2}$
$\log{a}+\log{b}$
$\log{4}+\log{7}$
$\log{2}+\log{3}$
$\log{m}-\log{n}$
$\log{x}+\log{y}$
$\frac{\log{81}}{\log{27}}$
$p\log{x}+q\log{y}$
$\frac{\log{64}}{\log{16}}$
$\left(\log{x}\right)^p$
$\frac{\log{25}}{\log{125}}$
$\log{\left(x-4\right)}$
$\log{4}+3\log{2}$
$\frac{\log{7}}{\log{3}}$
$\log{\left(2+x\right)}$
$2\log{3}+3\log{2}$
$\log{\left(x-y\right)}$
$-\log{24}-\log{3}$
$\frac{\log{y}}{\log{x}}$
$\log{56}-\log{8}$
$\log{\left(m-n\right)}$
$-\log{8}-\log{2}$
$2\log{3}+\log{5}$