itomath.com

Partial Fraction Decomposition

So far, we have operated on two or more fractions to make a single fraction.
Can we decompose a fraction into the sum or difference of two algebraic fractions?

1. Fill in the blanks with positive integers.
a)
$13$ / $15$
$=$
/ $3$
$+$
/ $5$
   
b)
$13$ / $28$
$=$
/ $4$
$-$
/ $7$
   
c)
$2x+6$ / $3x$
$=$
/ $3$
$+$
/ $x$
   
d)
$-8x+35$ / $10x$
$=$
/ $2x$
$-$
/ $5$
   
e)
$1+2x$ / $x^2$
$=$
/ $x$
$+$
/ $x^2$
   
2. Fill in the blanks with positive integers.
a)
$9x+5$ / $x\left(x+1\right)$
$=$
/ $x$
$+$
/ $x+1$
   
b)
$5x-4$ / $\left(x-2\right)\left(x+1\right)$
$=$
/ $x-2$
$+$
/ $x+1$
   
3. Fill in the blanks with integers (may be positive or negative).
a)
$x+5$ / $\left(x-3\right)\left(x+1\right)$
$=$
/ $x-3$
$+$
/ $x+1$
   
b)
$-8x+30$ / $\left(2x-3\right)\left(x-6\right)$
$=$
/ $2x-3$
$+$
/ $x-6$
   
4. Fill in the blanks with integers (may be positive or negative).
a)
$12x-1$ / $x^2+x-12$
$=$
/ $x-3$
$+$
/ $x+4$
   
b)
$14x+8$ / $3x^2-8x-3$
$=$
/ $3x+1$
$+$
/ $x-3$
   
c)
$8x-10$ / $4x^2-1$
$=$
/ $2x+1$
$+$
/ $2x-1$
   

Express in partial fractions.

a) $\displaystyle \frac{5x+11}{x^2+5x+4}=$

b) $\displaystyle \frac{7x+14}{x^2+3x-10}=$

c) $\displaystyle \frac{x+4}{x^2-7x+10}=$

d) $\displaystyle \frac{10x-27}{8x^2+10x-3}=$

e) $\displaystyle \frac{12}{16x^2-9}=$