itomath.com
Ito | Mathematics
IGCSE
IB Math AA SL
IB Math AA HL
Challenges
Proof of the Derivative of $\ln(x)$
The derivative of $f\left(x\right)=\ln x$ is $\displaystyle f'(x)=\frac{1}{x}$.
To prove this, we will use the following properties:
$\displaystyle f'(x)=\lim \limits_{h \to 0} \frac{f\left(x+h\right)-f\left(x\right)}{h}$
$\ln{x}-\ln{y}=\ln$
Check
$m \ln x= \ln$
Check
$\displaystyle \lim \limits_{n \to \infty} \left(1+\frac{1}{n}\right)^n=$
Check
Find the derivative of $f\left(x\right)=\ln x$ from first principles (1):
$f'(x)=\lim \limits_{h \to 0}$
Check
Write the denominator as $\displaystyle \frac{1}{h}$:
$\displaystyle f'(x)=\lim \limits_{h \to 0} \frac{1}{h} \Bigl($
Check
$\Bigl)$
Check
Use property 2:
$\displaystyle f'(x)=\lim \limits_{h \to 0} \frac{1}{h} \; \ln\Bigl($
Check
$\Bigl)$
Check
Divide both terms by $x$ and use property 3:
$\displaystyle f'(x)=\lim \limits_{h \to 0} \ln \left(1+\frac{h}{x}\right)$
Check
Check
Consider the substitution $\displaystyle n=\frac{x}{h}$. Then:
$h=$
Check
Also, if $h \rightarrow 0$, then:
$n \rightarrow$
0
1
∞
Check
Substitute $h$ and write in terms of $n$ and $x$:
$\displaystyle f'(x)=\lim \limits_{n \to \infty} \ln$
Check
Write $\displaystyle \frac{n}{x}$ as $n$ raised to an exponent:
$\displaystyle f'(x)=\lim \limits_{n \to \infty} \ln \left\{\left(1+\frac{1}{n}\right)^n\right\}$
Check
Check
Use property 3:
$\displaystyle f'(x)=\lim \limits_{n \to \infty}$
Check
$\displaystyle \ln \left(1+\frac{1}{n}\right)^n$
Check
Use property 4:
$\displaystyle f'(x)=\frac{1}{x} \ln \bigl($
Check
$\bigr)$
Check
Therefore, the derivative of $f\left(x\right)=\ln x$ is:
$f'(x)=$
Check