itomath.com

Quadratic Equations $ax^2+bx+c=0$

Factorizing $ax^2+bx+c$

Expand $\left(\color{#0275d8}{2x}+\color{#d9534f}{3}\right)\left(\color{#d9534f}{x}+\color{#0275d8}{1}\right)=$ $x^2+$ $\color{#0275d8}{x}+$ $\color{#d9534f}{x}+$

$=$ $x^2+$ $x+$

So, to factorize $2x^2+5x+3$
$\color{#0275d8}{x}$
$\color{#d9534f}{1x}$
where if you cross multiply and add, you get the middle term $5x$

Therefore, $2x^2+5x+3=\left(2x+3\right)\left(x+1\right)$

Practice
Factorize $3x^2+16x+5$
$x$
$x$
Therefore, $3x^2+16x+5=$

Factorize $6x^2+13x+6$
$3$
Therefore, $6x^2+13x+6=$

Factorize $8x^2+2x-15$
$3$
Therefore, $8x^2+2x-15=$

Factorize $-4x^2+19x-12$
$x$
Therefore, $-4x^2+19x-12=$
Factorize:
$3x^2+8x+4$

$2x^2+5x+3$

$3x^2+10x-8$

$3x^2+x-2$

$3x^2+7x-40$

$2x^2+19x+35$

$4x^2-5x+1$

$5x^2+7x-6$

$x^2-16$

$x^2-4$

$25x^2-16$

$49x^2-9$

Solve for $x$. If there are multiple answers, separate them with commas. Give answers as simplified fractions and not decimals.

$3x^2+7x+4=0 \qquad x=$

$2x^2+9x+9=0 \qquad x=$

$3x^2-8x+4=0 \qquad x=$

$3x^2-5x+2=0 \qquad x=$

$3x^2+29x+56=0 \qquad x=$

$3x^2+19x-40=0 \qquad x=$

$6x^2+13x+2=0 \qquad x=$

$4x^2-15x+9=0 \qquad x=$

$9x^2+6x+1=0 \qquad x=$

$8x^2+18x+9=0 \qquad x=$

$9x^2-9x-40=0 \qquad x=$

$15x^2+2x-45=0 \qquad x=$