A series is a sum of the terms in a sequence.
Examples using sigma notation:
$\displaystyle \sum_{\color{red}{n=1}}^\color{blue}{5} 2n+1=\underset{\color{red}{n=1}}3+\underset{n=2}5+\underset{n=3}7+\underset{n=4}9+\underset{\color{blue}{n=5}}{11}=35$
$\displaystyle \sum_{\color{red}{n=1}}^\color{blue}{4} 2n+1=\underset{\color{red}{n=1}}3+\underset{n=2}5+\underset{n=3}7+\underset{\color{blue}{n=4}}9=24$
$\displaystyle \sum_{\color{red}{n=3}}^\color{blue}{5} 2n+1=\underset{\color{red}{n=3}}7+\underset{n=4}9+\underset{\color{blue}{n=5}}{11}=27$
For each of the following series in sigma notation, write the terms as a sum.
For example:
$\displaystyle \sum_{n=2}^5 2n+1=5+7+9+11$
Use your calculator to calculate the following sums.
On the TI-Nspire CX, press then
Exercises
(Core 5F on P.113) #3ad, 4ef, 5, 7