What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{4}64=$
$\log _{3}27=$
$\log _{4}4=$
$\log _{3}9=$
$\log _{4}256=$
$\log _{9}9=$
$\log _{5}125=$
$\log _{5}1=$
$\log _{2}1=$
$\log _{2}64=$
$\log _{5}25=$
$\log _{2}8=$
$\log _{7}343=$
$\log _{9}1=$
$\log _{7}7=$
$\log1000=$
$\log _{6}6=$
$\log _{2}4=$
$\log _{8}8=$
$\log _{3}81=$
$\log _{6}1=$
$\log _{2}32=$
$\log _{7}1=$
$\log _{9}81=$
Evaluate. Give your answers as fractions.
$7^{-2}$
$4^0$
$5^{-4}$
$3^{-5}$
$3^{-2}$
$2^{-2}$
$4^{-3}$
$8^{-1}$
Evaluate.
$\log _{4}\frac{1}{64}=$
$\log _{2}\frac{1}{16}=$
$\log _{6}\frac{1}{216}=$
$\log\frac{1}{1000}=$
$\log _{5}\frac{1}{125}=$
$\log _{2}\frac{1}{2}=$
$\log _{3}1=$
$\log _{2}\frac{1}{32}=$
$\log _{7}1=$
$\log _{5}1=$
$\log _{6}1=$
$\log _{2}\frac{1}{64}=$
$\log _{3}\frac{1}{243}=$
$\log _{7}\frac{1}{7}=$
$\log\frac{1}{10}=$
$\log\frac{1}{100}=$
$\log _{8}\frac{1}{8}=$
$\log _{5}\frac{1}{5}=$
Evaluate. Give your answers as fractions.
$16^{\frac{1}{2}}$
$16^{\frac{1}{4}}$
$81^{-\frac{1}{4}}$
$729^{-\frac{1}{3}}$
$1000^{-\frac{1}{3}}$
$625^{-\frac{1}{4}}$
$625^{\frac{1}{4}}$
$16^{-\frac{1}{4}}$
Evaluate. Give your answers as fractions.
$\log_{243}3$
$\log_{729}9$
$\log_{81}\frac{1}{3}$
$\log_{1000}10$
$\log_{16}2$
$\log_{100}10$
$\log_{729}\frac{1}{9}$
$\log_{25}\frac{1}{5}$
$\log_{16}\frac{1}{2}$
$\log_{32}\frac{1}{2}$
$\log_{25}5$
$\log_{64}8$
$\log_{625}5$
$\log_{16}4$
$\log_{512}\frac{1}{8}$
$\log_{81}3$
$\log_{27}3$
$\log_{243}\frac{1}{3}$