What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{6}216=$
$\log _{3}9=$
$\log _{3}81=$
$\log _{8}8=$
$\log _{2}1=$
$\log _{2}16=$
$\log10000=$
$\log _{4}1=$
$\log _{2}4=$
$\log _{2}8=$
$\log _{8}64=$
$\log _{3}243=$
$\log _{4}256=$
$\log _{6}6=$
$\log _{6}1=$
$\log _{5}1=$
$\log _{2}32=$
$\log _{3}27=$
$\log _{9}9=$
$\log _{2}2=$
$\log _{9}1=$
$\log _{7}49=$
$\log _{8}512=$
$\log _{5}5=$
Evaluate. Give your answers as fractions.
$9^{-2}$
$5^{-2}$
$2^{-4}$
$10^{-2}$
$8^0$
$5^{-1}$
$7^0$
$9^{-1}$
Evaluate.
$\log _{4}\frac{1}{64}=$
$\log _{4}1=$
$\log\frac{1}{1000}=$
$\log _{7}\frac{1}{343}=$
$\log _{6}\frac{1}{36}=$
$\log _{2}\frac{1}{8}=$
$\log _{6}\frac{1}{216}=$
$\log _{4}\frac{1}{256}=$
$\log _{6}1=$
$\log _{2}\frac{1}{64}=$
$\log _{3}\frac{1}{9}=$
$\log _{2}1=$
$\log _{2}\frac{1}{4}=$
$\log _{8}\frac{1}{64}=$
$\log _{4}\frac{1}{4}=$
$\log\frac{1}{10}=$
$\log _{5}\frac{1}{125}=$
$\log _{3}\frac{1}{3}=$
Evaluate. Give your answers as fractions.
$36^{\frac{1}{2}}$
$81^{\frac{1}{4}}$
$64^{-\frac{1}{2}}$
$25^{\frac{1}{2}}$
$25^{-\frac{1}{2}}$
$512^{-\frac{1}{3}}$
$729^{-\frac{1}{3}}$
$125^{-\frac{1}{3}}$
Evaluate. Give your answers as fractions.
$\log_{64}\frac{1}{4}$
$\log_{16}2$
$\log_{32}\frac{1}{2}$
$\log_{16}\frac{1}{2}$
$\log_{32}2$
$\log_{729}\frac{1}{9}$
$\log_{64}\frac{1}{2}$
$\log_{9}\frac{1}{3}$
$\log_{216}\frac{1}{6}$
$\log_{25}\frac{1}{5}$
$\log_{81}\frac{1}{9}$
$\log_{36}6$
$\log_{100}10$
$\log_{243}3$
$\log_{64}2$
$\log_{216}6$
$\log_{81}\frac{1}{3}$
$\log_{25}5$