itomath.com

What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$

Evaluate.

$\log _{6}216=$

$\log _{3}9=$

$\log _{3}81=$

$\log _{8}8=$

$\log _{2}1=$

$\log _{2}16=$

$\log10000=$

$\log _{4}1=$

$\log _{2}4=$

$\log _{2}8=$

$\log _{8}64=$

$\log _{3}243=$

$\log _{4}256=$

$\log _{6}6=$

$\log _{6}1=$

$\log _{5}1=$

$\log _{2}32=$

$\log _{3}27=$

$\log _{9}9=$

$\log _{2}2=$

$\log _{9}1=$

$\log _{7}49=$

$\log _{8}512=$

$\log _{5}5=$
Evaluate. Give your answers as fractions.

$9^{-2}$

$5^{-2}$

$2^{-4}$

$10^{-2}$

$8^0$

$5^{-1}$

$7^0$

$9^{-1}$

Evaluate.

$\log _{4}\frac{1}{64}=$

$\log _{4}1=$

$\log\frac{1}{1000}=$

$\log _{7}\frac{1}{343}=$

$\log _{6}\frac{1}{36}=$

$\log _{2}\frac{1}{8}=$

$\log _{6}\frac{1}{216}=$

$\log _{4}\frac{1}{256}=$

$\log _{6}1=$

$\log _{2}\frac{1}{64}=$

$\log _{3}\frac{1}{9}=$

$\log _{2}1=$

$\log _{2}\frac{1}{4}=$

$\log _{8}\frac{1}{64}=$

$\log _{4}\frac{1}{4}=$

$\log\frac{1}{10}=$

$\log _{5}\frac{1}{125}=$

$\log _{3}\frac{1}{3}=$

Evaluate. Give your answers as fractions.

$36^{\frac{1}{2}}$

$81^{\frac{1}{4}}$

$64^{-\frac{1}{2}}$

$25^{\frac{1}{2}}$

$25^{-\frac{1}{2}}$

$512^{-\frac{1}{3}}$

$729^{-\frac{1}{3}}$

$125^{-\frac{1}{3}}$

Evaluate. Give your answers as fractions.

$\log_{64}\frac{1}{4}$

$\log_{16}2$

$\log_{32}\frac{1}{2}$

$\log_{16}\frac{1}{2}$

$\log_{32}2$

$\log_{729}\frac{1}{9}$

$\log_{64}\frac{1}{2}$

$\log_{9}\frac{1}{3}$

$\log_{216}\frac{1}{6}$

$\log_{25}\frac{1}{5}$

$\log_{81}\frac{1}{9}$

$\log_{36}6$

$\log_{100}10$

$\log_{243}3$

$\log_{64}2$

$\log_{216}6$

$\log_{81}\frac{1}{3}$

$\log_{25}5$