itomath.com

(3.4) Vertex Form $f\left(x\right)=a\left(x-h\right)^2+k$


Graph the following functions on the grid above.
$f\left(x\right)=\left(x+1\right)^2+3$
$g\left(x\right)=2\left(x+1\right)^2+3$
$h\left(x\right)=\frac{1}{3}\left(x+1\right)^2+3$
$j\left(x\right)=-\left(x+1\right)^2+3$

All of the functions have the form $a\left(x+1\right)^2+3$.
The coordinates of the vertex is and
the equation of the axis of symmetry is $x=$

Graph the following functions on the grid above.
$t\left(x\right)=3\left(x+4\right)^2+2$
$u\left(x\right)=\frac{1}{2}\left(x+3\right)^2-5$
$v\left(x\right)=-1.5\left(x-2\right)^2+4$
$w\left(x\right)=-\frac{1}{4}\left(x-6\right)^2-1$

Write down the coordinates of the vertex and equation fo the axis of symmetry for each function.

vertex:

vertex:

vertex:

vertex:

axis of symmetry:

axis of symmetry:

axis of symmetry:

axis of symmetry:
Now we will convert $f\left(x\right)=2x^2+12x+14$ to the form $f\left(x\right)=a\left(x-h\right)^2+k$. Fill in the blanks.

$f\left(x\right)=2x^2+12x+14$

$f\left(x\right)=$ $\left(x^2+6x+7\right)$
(take out a factor of $\square$)

$f\left(x\right)=2\bigl(x^2+6x\phantom{AAA}+7\phantom{AAAI}\bigl)$
(move $+7$ to the right)

$f\left(x\right)=2\bigl(x^2+6x+$ $+7-$ $\bigl)$
(add and subtract)
$\phantom{f\left(x\right)=2\bigl(}\underbrace{\phantom{.............}}_{\phantom{AAAAAAA}}$
$f\left(x\right)=2\bigl\{\bigl(x+$ $\bigl)^2-$ $\bigl\}$
(complete the square)

$f\left(x\right)=2\bigl(x+3\bigl)^2-$
(distribute $2$ to inside the $\bigl\{ \bigl\}$ brackets)

Write $f\left(x\right)=3x^2-12x+2$ in the form $f\left(x\right)=a\left(x-h\right)^2+k$. Fill in the blanks.

$f\left(x\right)=3x^2-12x+2$

$f\left(x\right)=$ $\left(x^2-4x+\frac{2}{3}\right)$
(take out a factor of $\square$)

$f\left(x\right)=3\bigl(x^2-4x\phantom{AAA}+\frac{2}{3}\phantom{AAAI}\bigl)$
(move $+\frac{2}{3}$ to the right)

$f\left(x\right)=3\bigl(x^2-4x+$ $+\frac{2}{3}-$ $\bigl)$
(add and subtract)
$\phantom{f\left(x\right)=2\bigl(}\underbrace{\phantom{.............}}_{\phantom{AAAAAAA}}$
$f\left(x\right)=3\bigl\{\bigl(x-$ $\bigl)^2-$ $\bigl\}$
(complete the square) *use improper fractions

$f\left(x\right)=3\bigl(x-2\bigl)^2-$
(distribute $3$ to inside the $\bigl\{ \bigl\}$ brackets)

Write $f\left(x\right)=5x^2-15x-7$ in the form $f\left(x\right)=a\left(x-h\right)^2+k$. Fill in the blanks.

$f\left(x\right)=5x^2-15x-7$

$f\left(x\right)=$ $\bigl(x^2-3x-$ $\bigl)$
(take out a factor of $\square$) *use improper fractions

$f\left(x\right)=5\bigl(x^2-3x\phantom{AAA}-\frac{7}{5}\phantom{AAAI}\bigl)$
(move $-\frac{7}{5}$ to the right)

$f\left(x\right)=5\bigl(x^2-3x+$ $-\frac{7}{5}-$ $\bigl)$
(add and subtract)
$\phantom{f\left(x\right)=2\bigl(}\underbrace{\phantom{.............}}_{\phantom{AAAAAAA}}$
$f\left(x\right)=5\bigl\{\bigl(x-$ $\bigl)^2-$ $\bigl\}$
(complete the square) *use improper fractions

$f\left(x\right)=5\bigl(x-\frac{3}{2}\bigl)^2-$
(distribute $5$ to inside the $\bigl\{ \bigl\}$ brackets)

Write $f\left(x\right)=-2x^2-10x+5$ in the form $f\left(x\right)=a\left(x-h\right)^2+k$. Fill in the blanks.

$f\left(x\right)=-2x^2-10x+5$

$f\left(x\right)=$ $\bigl(x^2+5x-$ $\bigl)$
(take out a factor of $\square$) *use improper fractions

$f\left(x\right)=-2\bigl(x^2+5x\phantom{AAA}-\frac{5}{2}\phantom{AAAI}\bigl)$
(move $-\frac{5}{2}$ to the right)

$f\left(x\right)=-2\bigl(x^2+5x+$ $-\frac{5}{2}-$ $\bigl)$
(add and subtract)
$\phantom{f\left(x\right)=-2\bigl(}\underbrace{\phantom{.............}}_{\phantom{AAAAAAA}}$
$f\left(x\right)=-2\bigl\{\bigl(x+$ $\bigl)^2-$ $\bigl\}$
(complete the square) *use improper fractions

$f\left(x\right)=-2\bigl(x+\frac{5}{2}\bigl)^2+$
(distribute $-2$ to inside the $\bigl\{ \bigl\}$ brackets)

Practice

Write the following in the form $a\left(x-h\right)^2+k$. Give your answers using improper fractions.

$2x^2+20x-1$
$2x^2-4x-3$

$2x^2+10x+4$
$2x^2-2x+3$

$5x^2+20x-1$
$3x^2-24x-5$

$4x^2+36x+5$
$5x^2-15x-5$

$-x^2-6x+5$
$-x^2+8x-5$

$-x^2-7x+1$
$-x^2+x+5$

$-5x^2-20x-3$
$-3x^2+6x-1$