itomath.com

(9.2) What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$


Evaluate.

$\log _{4}256=$

$\log _{8}512=$

$\log _{3}27=$

$\log _{6}216=$

$\log _{2}4=$

$\log _{4}4=$

$\log _{7}1=$

$\log _{5}625=$

$\log _{4}16=$

$\log _{5}5=$

$\log _{9}81=$

$\log _{8}1=$

$\log _{3}1=$

$\log _{7}49=$

$\log10000=$

$\log _{3}3=$

$\log _{4}64=$

$\log _{2}16=$

$\log _{3}81=$

$\log1000=$

$\log _{8}64=$

$\log _{2}2=$

$\log _{9}1=$

$\log100=$

Evaluate. Give your answers as fractions.

$8^0$

$10^{-3}$

$5^0$

$8^{-2}$

$9^{-3}$

$4^{-1}$

$8^{-3}$

$4^{-2}$

Evaluate.

$\log _{2}\frac{1}{8}=$

$\log1=$

$\log _{3}\frac{1}{27}=$

$\log _{6}\frac{1}{6}=$

$\log _{7}1=$

$\log _{7}\frac{1}{7}=$

$\log _{8}\frac{1}{512}=$

$\log _{3}\frac{1}{243}=$

$\log _{9}\frac{1}{9}=$

$\log _{9}\frac{1}{81}=$

$\log _{4}\frac{1}{256}=$

$\log _{3}\frac{1}{3}=$

$\log _{2}\frac{1}{2}=$

$\log _{6}1=$

$\log _{2}1=$

Evaluate. Give your answers as fractions.

$100^{-\frac{1}{2}}$

$512^{-\frac{1}{3}}$

$256^{\frac{1}{4}}$

$343^{\frac{1}{3}}$

$125^{-\frac{1}{3}}$

$64^{-\frac{1}{2}}$

$9^{\frac{1}{2}}$

$36^{-\frac{1}{2}}$

Evaluate. Give your answers as fractions.

$\log_{27}\frac{1}{3}$

$\log_{256}4$

$\log_{125}\frac{1}{5}$

$\log_{216}\frac{1}{6}$

$\log_{100}\frac{1}{10}$

$\log_{625}\frac{1}{5}$

$\log_{729}9$

$\log_{64}\frac{1}{2}$

$\log_{16}2$

$\log_{9}\frac{1}{3}$

$\log_{4}2$

$\log_{16}\frac{1}{2}$

$\log_{81}\frac{1}{9}$

$\log_{1000}10$

$\log_{243}3$