(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{4}256=$
$\log _{8}512=$
$\log _{3}27=$
$\log _{6}216=$
$\log _{2}4=$
$\log _{4}4=$
$\log _{7}1=$
$\log _{5}625=$
$\log _{4}16=$
$\log _{5}5=$
$\log _{9}81=$
$\log _{8}1=$
$\log _{3}1=$
$\log _{7}49=$
$\log10000=$
$\log _{3}3=$
$\log _{4}64=$
$\log _{2}16=$
$\log _{3}81=$
$\log1000=$
$\log _{8}64=$
$\log _{2}2=$
$\log _{9}1=$
$\log100=$
Evaluate. Give your answers as fractions.
$8^0$
$10^{-3}$
$5^0$
$8^{-2}$
$9^{-3}$
$4^{-1}$
$8^{-3}$
$4^{-2}$
Evaluate.
$\log _{2}\frac{1}{8}=$
$\log1=$
$\log _{3}\frac{1}{27}=$
$\log _{6}\frac{1}{6}=$
$\log _{7}1=$
$\log _{7}\frac{1}{7}=$
$\log _{8}\frac{1}{512}=$
$\log _{3}\frac{1}{243}=$
$\log _{9}\frac{1}{9}=$
$\log _{9}\frac{1}{81}=$
$\log _{4}\frac{1}{256}=$
$\log _{3}\frac{1}{3}=$
$\log _{2}\frac{1}{2}=$
$\log _{6}1=$
$\log _{2}1=$
Evaluate. Give your answers as fractions.
$100^{-\frac{1}{2}}$
$512^{-\frac{1}{3}}$
$256^{\frac{1}{4}}$
$343^{\frac{1}{3}}$
$125^{-\frac{1}{3}}$
$64^{-\frac{1}{2}}$
$9^{\frac{1}{2}}$
$36^{-\frac{1}{2}}$
Evaluate. Give your answers as fractions.
$\log_{27}\frac{1}{3}$
$\log_{256}4$
$\log_{125}\frac{1}{5}$
$\log_{216}\frac{1}{6}$
$\log_{100}\frac{1}{10}$
$\log_{625}\frac{1}{5}$
$\log_{729}9$
$\log_{64}\frac{1}{2}$
$\log_{16}2$
$\log_{9}\frac{1}{3}$
$\log_{4}2$
$\log_{16}\frac{1}{2}$
$\log_{81}\frac{1}{9}$
$\log_{1000}10$
$\log_{243}3$