itomath.com

(9.2) What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$


Evaluate.

$\log _{9}729=$

$\log _{2}32=$

$\log100=$

$\log _{7}1=$

$\log _{6}6=$

$\log _{2}4=$

$\log _{4}64=$

$\log _{8}1=$

$\log _{3}1=$

$\log _{2}1=$

$\log _{4}4=$

$\log _{7}7=$

$\log _{3}27=$

$\log10000=$

$\log1000=$

$\log _{9}1=$

$\log _{3}243=$

$\log _{6}1=$

$\log _{5}625=$

$\log _{3}3=$

$\log _{5}1=$

$\log _{2}64=$

$\log _{4}256=$

$\log _{7}343=$

Evaluate. Give your answers as fractions.

$2^{-5}$

$2^{-1}$

$5^{-4}$

$3^{-5}$

$4^{-3}$

$6^0$

$2^{-3}$

$9^0$

Evaluate.

$\log\frac{1}{1000}=$

$\log _{5}\frac{1}{5}=$

$\log _{7}\frac{1}{49}=$

$\log\frac{1}{10}=$

$\log _{3}\frac{1}{27}=$

$\log\frac{1}{100}=$

$\log1=$

$\log _{2}\frac{1}{32}=$

$\log _{6}1=$

$\log _{6}\frac{1}{6}=$

$\log _{6}\frac{1}{216}=$

$\log _{3}\frac{1}{243}=$

$\log _{2}1=$

$\log _{9}\frac{1}{9}=$

$\log _{4}\frac{1}{16}=$

Evaluate. Give your answers as fractions.

$729^{\frac{1}{3}}$

$100^{\frac{1}{2}}$

$243^{-\frac{1}{5}}$

$256^{\frac{1}{4}}$

$100^{-\frac{1}{2}}$

$64^{-\frac{1}{2}}$

$16^{\frac{1}{4}}$

$27^{\frac{1}{3}}$

Evaluate. Give your answers as fractions.

$\log_{125}5$

$\log_{16}2$

$\log_{216}\frac{1}{6}$

$\log_{64}\frac{1}{2}$

$\log_{25}\frac{1}{5}$

$\log_{512}\frac{1}{8}$

$\log_{64}4$

$\log_{81}\frac{1}{3}$

$\log_{4}\frac{1}{2}$

$\log_{243}\frac{1}{3}$

$\log_{8}\frac{1}{2}$

$\log_{27}\frac{1}{3}$

$\log_{343}\frac{1}{7}$

$\log_{256}\frac{1}{4}$

$\log_{729}\frac{1}{9}$