(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{6}36=$
$\log _{2}32=$
$\log _{3}3=$
$\log _{3}27=$
$\log _{5}25=$
$\log _{9}729=$
$\log _{3}1=$
$\log _{4}1=$
$\log _{5}1=$
$\log _{8}1=$
$\log _{5}5=$
$\log1000=$
$\log _{9}1=$
$\log _{2}1=$
$\log _{2}4=$
$\log _{8}64=$
$\log _{2}64=$
$\log _{6}216=$
$\log _{3}81=$
$\log _{6}6=$
$\log _{7}7=$
$\log _{7}343=$
$\log10000=$
$\log _{8}8=$
Evaluate. Give your answers as fractions.
$4^{-1}$
$6^{-1}$
$4^{-4}$
$2^{-4}$
$3^0$
$6^{-3}$
$9^{-1}$
$2^{-5}$
Evaluate.
$\log _{2}\frac{1}{2}=$
$\log _{2}\frac{1}{16}=$
$\log _{5}\frac{1}{625}=$
$\log _{2}\frac{1}{4}=$
$\log _{3}\frac{1}{9}=$
$\log _{6}\frac{1}{6}=$
$\log _{9}\frac{1}{81}=$
$\log _{9}\frac{1}{729}=$
$\log _{2}\frac{1}{64}=$
$\log _{7}\frac{1}{343}=$
$\log _{5}\frac{1}{125}=$
$\log _{5}\frac{1}{5}=$
$\log _{4}\frac{1}{256}=$
$\log _{8}\frac{1}{64}=$
$\log _{4}\frac{1}{4}=$
Evaluate. Give your answers as fractions.
$729^{-\frac{1}{3}}$
$36^{-\frac{1}{2}}$
$100^{\frac{1}{2}}$
$625^{-\frac{1}{4}}$
$125^{-\frac{1}{3}}$
$8^{-\frac{1}{3}}$
$625^{\frac{1}{4}}$
$9^{\frac{1}{2}}$
Evaluate. Give your answers as fractions.
$\log_{64}\frac{1}{8}$
$\log_{216}6$
$\log_{36}6$
$\log_{25}5$
$\log_{64}\frac{1}{2}$
$\log_{9}\frac{1}{3}$
$\log_{64}8$
$\log_{64}2$
$\log_{729}9$
$\log_{16}4$
$\log_{16}\frac{1}{4}$
$\log_{256}4$
$\log_{25}\frac{1}{5}$
$\log_{256}\frac{1}{4}$
$\log_{216}\frac{1}{6}$