(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{5}5=$
$\log _{3}27=$
$\log _{9}729=$
$\log _{6}36=$
$\log _{2}16=$
$\log _{8}8=$
$\log _{7}343=$
$\log _{4}256=$
$\log _{6}216=$
$\log _{5}125=$
$\log _{8}512=$
$\log _{4}16=$
$\log _{5}25=$
$\log _{8}64=$
$\log100=$
$\log _{4}4=$
$\log _{5}1=$
$\log _{2}64=$
$\log _{5}625=$
$\log10000=$
$\log _{9}81=$
$\log _{3}243=$
$\log1000=$
$\log _{2}8=$
Evaluate. Give your answers as fractions.
$3^{-5}$
$8^0$
$5^{-1}$
$7^{-2}$
$6^{-3}$
$5^0$
$4^{-3}$
$7^{-1}$
Evaluate.
$\log _{5}\frac{1}{25}=$
$\log _{3}\frac{1}{27}=$
$\log _{3}1=$
$\log _{3}\frac{1}{9}=$
$\log _{5}\frac{1}{125}=$
$\log _{9}\frac{1}{729}=$
$\log _{2}\frac{1}{4}=$
$\log _{6}\frac{1}{6}=$
$\log _{8}\frac{1}{64}=$
$\log _{9}\frac{1}{9}=$
$\log _{7}\frac{1}{7}=$
$\log _{8}\frac{1}{512}=$
$\log _{2}\frac{1}{32}=$
$\log _{5}\frac{1}{625}=$
$\log _{4}\frac{1}{4}=$
Evaluate. Give your answers as fractions.
$125^{-\frac{1}{3}}$
$8^{-\frac{1}{3}}$
$243^{\frac{1}{5}}$
$27^{-\frac{1}{3}}$
$100^{\frac{1}{2}}$
$8^{\frac{1}{3}}$
$100^{-\frac{1}{2}}$
$49^{\frac{1}{2}}$
Evaluate. Give your answers as fractions.
$\log_{81}3$
$\log_{100}10$
$\log_{125}5$
$\log_{16}2$
$\log_{243}\frac{1}{3}$
$\log_{216}\frac{1}{6}$
$\log_{49}7$
$\log_{49}\frac{1}{7}$
$\log_{625}5$
$\log_{64}4$
$\log_{64}2$
$\log_{243}3$
$\log_{32}\frac{1}{2}$
$\log_{32}2$
$\log_{36}6$