itomath.com

(9.2) What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$


Evaluate.

$\log _{5}5=$

$\log _{3}27=$

$\log _{9}729=$

$\log _{6}36=$

$\log _{2}16=$

$\log _{8}8=$

$\log _{7}343=$

$\log _{4}256=$

$\log _{6}216=$

$\log _{5}125=$

$\log _{8}512=$

$\log _{4}16=$

$\log _{5}25=$

$\log _{8}64=$

$\log100=$

$\log _{4}4=$

$\log _{5}1=$

$\log _{2}64=$

$\log _{5}625=$

$\log10000=$

$\log _{9}81=$

$\log _{3}243=$

$\log1000=$

$\log _{2}8=$

Evaluate. Give your answers as fractions.

$3^{-5}$

$8^0$

$5^{-1}$

$7^{-2}$

$6^{-3}$

$5^0$

$4^{-3}$

$7^{-1}$

Evaluate.

$\log _{5}\frac{1}{25}=$

$\log _{3}\frac{1}{27}=$

$\log _{3}1=$

$\log _{3}\frac{1}{9}=$

$\log _{5}\frac{1}{125}=$

$\log _{9}\frac{1}{729}=$

$\log _{2}\frac{1}{4}=$

$\log _{6}\frac{1}{6}=$

$\log _{8}\frac{1}{64}=$

$\log _{9}\frac{1}{9}=$

$\log _{7}\frac{1}{7}=$

$\log _{8}\frac{1}{512}=$

$\log _{2}\frac{1}{32}=$

$\log _{5}\frac{1}{625}=$

$\log _{4}\frac{1}{4}=$

Evaluate. Give your answers as fractions.

$125^{-\frac{1}{3}}$

$8^{-\frac{1}{3}}$

$243^{\frac{1}{5}}$

$27^{-\frac{1}{3}}$

$100^{\frac{1}{2}}$

$8^{\frac{1}{3}}$

$100^{-\frac{1}{2}}$

$49^{\frac{1}{2}}$

Evaluate. Give your answers as fractions.

$\log_{81}3$

$\log_{100}10$

$\log_{125}5$

$\log_{16}2$

$\log_{243}\frac{1}{3}$

$\log_{216}\frac{1}{6}$

$\log_{49}7$

$\log_{49}\frac{1}{7}$

$\log_{625}5$

$\log_{64}4$

$\log_{64}2$

$\log_{243}3$

$\log_{32}\frac{1}{2}$

$\log_{32}2$

$\log_{36}6$