itomath.com

(9.2) What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$


Evaluate.

$\log _{3}27=$

$\log _{6}216=$

$\log _{8}8=$

$\log _{2}32=$

$\log _{4}256=$

$\log _{2}64=$

$\log _{4}16=$

$\log _{7}7=$

$\log _{7}49=$

$\log _{8}1=$

$\log _{5}25=$

$\log _{7}343=$

$\log10000=$

$\log _{7}1=$

$\log _{3}243=$

$\log _{5}625=$

$\log _{9}729=$

$\log _{9}1=$

$\log _{2}16=$

$\log _{6}1=$

$\log _{5}5=$

$\log _{2}2=$

$\log _{4}1=$

$\log _{8}512=$

Evaluate. Give your answers as fractions.

$2^0$

$9^{-1}$

$6^{-1}$

$4^0$

$10^{-1}$

$2^{-1}$

$2^{-6}$

$3^{-4}$

Evaluate.

$\log _{3}1=$

$\log _{2}\frac{1}{64}=$

$\log\frac{1}{1000}=$

$\log _{8}\frac{1}{64}=$

$\log _{4}\frac{1}{4}=$

$\log _{6}\frac{1}{6}=$

$\log _{5}\frac{1}{25}=$

$\log _{7}1=$

$\log _{3}\frac{1}{243}=$

$\log _{2}1=$

$\log _{9}1=$

$\log _{6}\frac{1}{36}=$

$\log _{2}\frac{1}{32}=$

$\log _{2}\frac{1}{2}=$

$\log _{9}\frac{1}{9}=$

Evaluate. Give your answers as fractions.

$512^{-\frac{1}{3}}$

$216^{-\frac{1}{3}}$

$625^{-\frac{1}{4}}$

$27^{-\frac{1}{3}}$

$1000^{-\frac{1}{3}}$

$100^{-\frac{1}{2}}$

$243^{\frac{1}{5}}$

$16^{-\frac{1}{4}}$

Evaluate. Give your answers as fractions.

$\log_{243}\frac{1}{3}$

$\log_{36}\frac{1}{6}$

$\log_{25}\frac{1}{5}$

$\log_{4}\frac{1}{2}$

$\log_{1000}10$

$\log_{125}\frac{1}{5}$

$\log_{1000}\frac{1}{10}$

$\log_{729}\frac{1}{9}$

$\log_{49}\frac{1}{7}$

$\log_{81}\frac{1}{3}$

$\log_{8}2$

$\log_{256}\frac{1}{4}$

$\log_{4}2$

$\log_{512}\frac{1}{8}$

$\log_{64}\frac{1}{4}$