(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{9}729=$
$\log _{2}32=$
$\log100=$
$\log _{7}1=$
$\log _{6}6=$
$\log _{2}4=$
$\log _{4}64=$
$\log _{8}1=$
$\log _{3}1=$
$\log _{2}1=$
$\log _{4}4=$
$\log _{7}7=$
$\log _{3}27=$
$\log10000=$
$\log1000=$
$\log _{9}1=$
$\log _{3}243=$
$\log _{6}1=$
$\log _{5}625=$
$\log _{3}3=$
$\log _{5}1=$
$\log _{2}64=$
$\log _{4}256=$
$\log _{7}343=$
Evaluate. Give your answers as fractions.
$2^{-5}$
$2^{-1}$
$5^{-4}$
$3^{-5}$
$4^{-3}$
$6^0$
$2^{-3}$
$9^0$
Evaluate.
$\log\frac{1}{1000}=$
$\log _{5}\frac{1}{5}=$
$\log _{7}\frac{1}{49}=$
$\log\frac{1}{10}=$
$\log _{3}\frac{1}{27}=$
$\log\frac{1}{100}=$
$\log1=$
$\log _{2}\frac{1}{32}=$
$\log _{6}1=$
$\log _{6}\frac{1}{6}=$
$\log _{6}\frac{1}{216}=$
$\log _{3}\frac{1}{243}=$
$\log _{2}1=$
$\log _{9}\frac{1}{9}=$
$\log _{4}\frac{1}{16}=$
Evaluate. Give your answers as fractions.
$729^{\frac{1}{3}}$
$100^{\frac{1}{2}}$
$243^{-\frac{1}{5}}$
$256^{\frac{1}{4}}$
$100^{-\frac{1}{2}}$
$64^{-\frac{1}{2}}$
$16^{\frac{1}{4}}$
$27^{\frac{1}{3}}$
Evaluate. Give your answers as fractions.
$\log_{125}5$
$\log_{16}2$
$\log_{216}\frac{1}{6}$
$\log_{64}\frac{1}{2}$
$\log_{25}\frac{1}{5}$
$\log_{512}\frac{1}{8}$
$\log_{64}4$
$\log_{81}\frac{1}{3}$
$\log_{4}\frac{1}{2}$
$\log_{243}\frac{1}{3}$
$\log_{8}\frac{1}{2}$
$\log_{27}\frac{1}{3}$
$\log_{343}\frac{1}{7}$
$\log_{256}\frac{1}{4}$
$\log_{729}\frac{1}{9}$