(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{9}9=$
$\log _{3}27=$
$\log _{9}1=$
$\log _{2}1=$
$\log _{6}36=$
$\log _{7}7=$
$\log _{8}1=$
$\log _{8}512=$
$\log _{5}125=$
$\log _{4}256=$
$\log _{5}625=$
$\log _{2}8=$
$\log _{5}1=$
$\log _{2}32=$
$\log _{5}5=$
$\log1000=$
$\log _{2}16=$
$\log _{2}64=$
$\log _{8}64=$
$\log _{6}216=$
$\log _{4}4=$
$\log _{2}2=$
$\log _{2}4=$
$\log _{6}6=$
Evaluate. Give your answers as fractions.
$2^{-6}$
$2^{-3}$
$8^0$
$3^0$
$6^{-2}$
$5^{-4}$
$5^{-2}$
$8^{-2}$
Evaluate.
$\log _{2}1=$
$\log _{3}\frac{1}{81}=$
$\log _{7}\frac{1}{49}=$
$\log _{6}\frac{1}{6}=$
$\log _{9}\frac{1}{81}=$
$\log _{4}\frac{1}{16}=$
$\log _{7}1=$
$\log\frac{1}{100}=$
$\log _{3}1=$
$\log _{4}\frac{1}{256}=$
$\log _{4}\frac{1}{64}=$
$\log _{7}\frac{1}{7}=$
$\log _{9}\frac{1}{9}=$
$\log _{5}\frac{1}{25}=$
$\log _{3}\frac{1}{9}=$
Evaluate. Give your answers as fractions.
$64^{\frac{1}{6}}$
$64^{-\frac{1}{2}}$
$49^{\frac{1}{2}}$
$16^{\frac{1}{4}}$
$100^{-\frac{1}{2}}$
$36^{-\frac{1}{2}}$
$343^{\frac{1}{3}}$
$81^{\frac{1}{2}}$
Evaluate. Give your answers as fractions.
$\log_{256}\frac{1}{4}$
$\log_{8}\frac{1}{2}$
$\log_{27}\frac{1}{3}$
$\log_{729}\frac{1}{9}$
$\log_{343}7$
$\log_{100}10$
$\log_{216}\frac{1}{6}$
$\log_{81}\frac{1}{9}$
$\log_{32}\frac{1}{2}$
$\log_{125}5$
$\log_{64}\frac{1}{2}$
$\log_{81}\frac{1}{3}$
$\log_{4}2$
$\log_{100}\frac{1}{10}$
$\log_{64}\frac{1}{8}$