(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{3}27=$
$\log _{6}216=$
$\log _{8}8=$
$\log _{2}32=$
$\log _{4}256=$
$\log _{2}64=$
$\log _{4}16=$
$\log _{7}7=$
$\log _{7}49=$
$\log _{8}1=$
$\log _{5}25=$
$\log _{7}343=$
$\log10000=$
$\log _{7}1=$
$\log _{3}243=$
$\log _{5}625=$
$\log _{9}729=$
$\log _{9}1=$
$\log _{2}16=$
$\log _{6}1=$
$\log _{5}5=$
$\log _{2}2=$
$\log _{4}1=$
$\log _{8}512=$
Evaluate. Give your answers as fractions.
$2^0$
$9^{-1}$
$6^{-1}$
$4^0$
$10^{-1}$
$2^{-1}$
$2^{-6}$
$3^{-4}$
Evaluate.
$\log _{3}1=$
$\log _{2}\frac{1}{64}=$
$\log\frac{1}{1000}=$
$\log _{8}\frac{1}{64}=$
$\log _{4}\frac{1}{4}=$
$\log _{6}\frac{1}{6}=$
$\log _{5}\frac{1}{25}=$
$\log _{7}1=$
$\log _{3}\frac{1}{243}=$
$\log _{2}1=$
$\log _{9}1=$
$\log _{6}\frac{1}{36}=$
$\log _{2}\frac{1}{32}=$
$\log _{2}\frac{1}{2}=$
$\log _{9}\frac{1}{9}=$
Evaluate. Give your answers as fractions.
$512^{-\frac{1}{3}}$
$216^{-\frac{1}{3}}$
$625^{-\frac{1}{4}}$
$27^{-\frac{1}{3}}$
$1000^{-\frac{1}{3}}$
$100^{-\frac{1}{2}}$
$243^{\frac{1}{5}}$
$16^{-\frac{1}{4}}$
Evaluate. Give your answers as fractions.
$\log_{243}\frac{1}{3}$
$\log_{36}\frac{1}{6}$
$\log_{25}\frac{1}{5}$
$\log_{4}\frac{1}{2}$
$\log_{1000}10$
$\log_{125}\frac{1}{5}$
$\log_{1000}\frac{1}{10}$
$\log_{729}\frac{1}{9}$
$\log_{49}\frac{1}{7}$
$\log_{81}\frac{1}{3}$
$\log_{8}2$
$\log_{256}\frac{1}{4}$
$\log_{4}2$
$\log_{512}\frac{1}{8}$
$\log_{64}\frac{1}{4}$