itomath.com

(9.2) What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$


Evaluate.

$\log _{5}25=$

$\log _{8}512=$

$\log _{5}125=$

$\log _{8}8=$

$\log100=$

$\log _{2}32=$

$\log _{8}64=$

$\log _{3}81=$

$\log _{7}49=$

$\log _{2}2=$

$\log _{3}243=$

$\log _{7}343=$

$\log _{9}9=$

$\log1000=$

$\log _{9}1=$

$\log _{4}256=$

$\log _{2}16=$

$\log _{7}1=$

$\log _{2}64=$

$\log _{4}1=$

$\log _{6}36=$

$\log _{2}4=$

$\log _{6}216=$

$\log10000=$

Evaluate. Give your answers as fractions.

$4^{-3}$

$8^{-1}$

$3^0$

$5^{-2}$

$2^{-3}$

$6^{-2}$

$3^{-1}$

$10^{-2}$

Evaluate.

$\log _{8}\frac{1}{8}=$

$\log _{6}\frac{1}{36}=$

$\log _{8}\frac{1}{64}=$

$\log _{4}\frac{1}{4}=$

$\log _{9}\frac{1}{9}=$

$\log _{8}\frac{1}{512}=$

$\log _{2}\frac{1}{32}=$

$\log _{7}1=$

$\log _{8}1=$

$\log\frac{1}{100}=$

$\log _{3}\frac{1}{81}=$

$\log _{4}\frac{1}{256}=$

$\log _{2}\frac{1}{64}=$

$\log _{2}1=$

$\log _{2}\frac{1}{8}=$

Evaluate. Give your answers as fractions.

$8^{-\frac{1}{3}}$

$27^{-\frac{1}{3}}$

$16^{-\frac{1}{2}}$

$9^{-\frac{1}{2}}$

$243^{\frac{1}{5}}$

$1000^{-\frac{1}{3}}$

$81^{-\frac{1}{2}}$

$32^{\frac{1}{5}}$

Evaluate. Give your answers as fractions.

$\log_{49}\frac{1}{7}$

$\log_{243}3$

$\log_{343}7$

$\log_{32}\frac{1}{2}$

$\log_{8}\frac{1}{2}$

$\log_{64}2$

$\log_{729}9$

$\log_{243}\frac{1}{3}$

$\log_{64}\frac{1}{4}$

$\log_{25}\frac{1}{5}$

$\log_{16}\frac{1}{2}$

$\log_{36}\frac{1}{6}$

$\log_{4}\frac{1}{2}$

$\log_{256}\frac{1}{4}$

$\log_{125}5$