itomath.com

(9.2) What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$


Evaluate.

$\log1000=$

$\log _{3}81=$

$\log _{8}8=$

$\log _{5}1=$

$\log _{6}1=$

$\log _{7}7=$

$\log _{8}512=$

$\log _{3}3=$

$\log _{2}8=$

$\log _{4}1=$

$\log _{7}1=$

$\log _{7}343=$

$\log _{2}2=$

$\log _{2}1=$

$\log _{4}16=$

$\log _{6}216=$

$\log _{5}25=$

$\log _{4}64=$

$\log10000=$

$\log100=$

$\log _{5}5=$

$\log _{3}9=$

$\log _{5}625=$

$\log _{3}243=$

Evaluate. Give your answers as fractions.

$7^{-3}$

$6^{-1}$

$2^{-6}$

$2^{-1}$

$3^{-5}$

$4^{-4}$

$8^{-3}$

$8^{-2}$

Evaluate.

$\log _{7}\frac{1}{49}=$

$\log _{2}\frac{1}{64}=$

$\log _{5}\frac{1}{625}=$

$\log _{6}1=$

$\log _{5}\frac{1}{5}=$

$\log _{4}\frac{1}{16}=$

$\log _{7}1=$

$\log _{3}\frac{1}{9}=$

$\log _{3}1=$

$\log _{6}\frac{1}{6}=$

$\log _{5}\frac{1}{25}=$

$\log _{2}\frac{1}{16}=$

$\log _{5}\frac{1}{125}=$

$\log _{8}\frac{1}{8}=$

$\log1=$

Evaluate. Give your answers as fractions.

$81^{-\frac{1}{4}}$

$100^{-\frac{1}{2}}$

$64^{-\frac{1}{2}}$

$64^{\frac{1}{6}}$

$64^{\frac{1}{2}}$

$25^{\frac{1}{2}}$

$9^{\frac{1}{2}}$

$125^{\frac{1}{3}}$

Evaluate. Give your answers as fractions.

$\log_{64}8$

$\log_{64}\frac{1}{2}$

$\log_{243}3$

$\log_{1000}\frac{1}{10}$

$\log_{8}2$

$\log_{216}\frac{1}{6}$

$\log_{16}2$

$\log_{81}\frac{1}{9}$

$\log_{64}\frac{1}{4}$

$\log_{16}\frac{1}{2}$

$\log_{125}\frac{1}{5}$

$\log_{49}\frac{1}{7}$

$\log_{16}4$

$\log_{8}\frac{1}{2}$

$\log_{64}4$