(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{8}1=$
$\log _{5}125=$
$\log _{6}36=$
$\log _{5}1=$
$\log _{7}343=$
$\log _{9}1=$
$\log _{5}625=$
$\log100=$
$\log _{3}9=$
$\log _{9}81=$
$\log _{3}81=$
$\log _{4}64=$
$\log _{8}512=$
$\log _{4}256=$
$\log _{9}729=$
$\log _{7}49=$
$\log _{4}4=$
$\log _{2}16=$
$\log _{5}25=$
$\log _{5}5=$
$\log _{2}32=$
$\log _{2}8=$
$\log _{6}6=$
$\log _{4}16=$
Evaluate. Give your answers as fractions.
$5^{-3}$
$2^0$
$3^{-2}$
$5^0$
$6^{-2}$
$7^{-3}$
$8^{-2}$
$3^{-3}$
Evaluate.
$\log _{4}\frac{1}{64}=$
$\log _{2}\frac{1}{64}=$
$\log _{7}\frac{1}{7}=$
$\log _{5}\frac{1}{25}=$
$\log _{6}\frac{1}{216}=$
$\log _{5}\frac{1}{125}=$
$\log\frac{1}{1000}=$
$\log\frac{1}{100}=$
$\log1=$
$\log _{7}1=$
$\log _{5}\frac{1}{625}=$
$\log _{4}1=$
$\log _{9}1=$
$\log _{3}\frac{1}{243}=$
$\log _{4}\frac{1}{16}=$
Evaluate. Give your answers as fractions.
$1000^{-\frac{1}{3}}$
$81^{\frac{1}{4}}$
$32^{-\frac{1}{5}}$
$625^{\frac{1}{4}}$
$16^{-\frac{1}{2}}$
$64^{-\frac{1}{2}}$
$16^{\frac{1}{2}}$
$32^{\frac{1}{5}}$
Evaluate. Give your answers as fractions.
$\log_{16}2$
$\log_{216}6$
$\log_{27}\frac{1}{3}$
$\log_{81}\frac{1}{9}$
$\log_{8}2$
$\log_{64}\frac{1}{4}$
$\log_{512}\frac{1}{8}$
$\log_{100}10$
$\log_{36}\frac{1}{6}$
$\log_{625}\frac{1}{5}$
$\log_{729}\frac{1}{9}$
$\log_{125}5$
$\log_{4}2$
$\log_{1000}\frac{1}{10}$
$\log_{243}\frac{1}{3}$