(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log1000=$
$\log _{3}81=$
$\log _{8}8=$
$\log _{5}1=$
$\log _{6}1=$
$\log _{7}7=$
$\log _{8}512=$
$\log _{3}3=$
$\log _{2}8=$
$\log _{4}1=$
$\log _{7}1=$
$\log _{7}343=$
$\log _{2}2=$
$\log _{2}1=$
$\log _{4}16=$
$\log _{6}216=$
$\log _{5}25=$
$\log _{4}64=$
$\log10000=$
$\log100=$
$\log _{5}5=$
$\log _{3}9=$
$\log _{5}625=$
$\log _{3}243=$
Evaluate. Give your answers as fractions.
$7^{-3}$
$6^{-1}$
$2^{-6}$
$2^{-1}$
$3^{-5}$
$4^{-4}$
$8^{-3}$
$8^{-2}$
Evaluate.
$\log _{7}\frac{1}{49}=$
$\log _{2}\frac{1}{64}=$
$\log _{5}\frac{1}{625}=$
$\log _{6}1=$
$\log _{5}\frac{1}{5}=$
$\log _{4}\frac{1}{16}=$
$\log _{7}1=$
$\log _{3}\frac{1}{9}=$
$\log _{3}1=$
$\log _{6}\frac{1}{6}=$
$\log _{5}\frac{1}{25}=$
$\log _{2}\frac{1}{16}=$
$\log _{5}\frac{1}{125}=$
$\log _{8}\frac{1}{8}=$
$\log1=$
Evaluate. Give your answers as fractions.
$81^{-\frac{1}{4}}$
$100^{-\frac{1}{2}}$
$64^{-\frac{1}{2}}$
$64^{\frac{1}{6}}$
$64^{\frac{1}{2}}$
$25^{\frac{1}{2}}$
$9^{\frac{1}{2}}$
$125^{\frac{1}{3}}$
Evaluate. Give your answers as fractions.
$\log_{64}8$
$\log_{64}\frac{1}{2}$
$\log_{243}3$
$\log_{1000}\frac{1}{10}$
$\log_{8}2$
$\log_{216}\frac{1}{6}$
$\log_{16}2$
$\log_{81}\frac{1}{9}$
$\log_{64}\frac{1}{4}$
$\log_{16}\frac{1}{2}$
$\log_{125}\frac{1}{5}$
$\log_{49}\frac{1}{7}$
$\log_{16}4$
$\log_{8}\frac{1}{2}$
$\log_{64}4$