itomath.com

(9.2) What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$


Evaluate.

$\log _{2}32=$

$\log _{3}81=$

$\log _{2}4=$

$\log100=$

$\log _{3}9=$

$\log _{5}25=$

$\log _{3}243=$

$\log _{8}8=$

$\log _{9}729=$

$\log _{3}1=$

$\log _{4}64=$

$\log _{6}6=$

$\log _{3}3=$

$\log10000=$

$\log _{6}1=$

$\log _{9}81=$

$\log _{2}1=$

$\log _{7}1=$

$\log _{9}1=$

$\log _{8}1=$

$\log _{4}4=$

$\log _{2}16=$

$\log _{8}512=$

$\log _{2}8=$

Evaluate. Give your answers as fractions.

$2^{-3}$

$3^0$

$6^{-3}$

$6^{-2}$

$8^0$

$2^0$

$3^{-1}$

$2^{-2}$

Evaluate.

$\log _{7}\frac{1}{343}=$

$\log _{5}1=$

$\log _{4}\frac{1}{64}=$

$\log _{7}\frac{1}{49}=$

$\log _{3}1=$

$\log\frac{1}{1000}=$

$\log _{2}\frac{1}{8}=$

$\log _{2}\frac{1}{64}=$

$\log1=$

$\log _{9}1=$

$\log _{8}\frac{1}{512}=$

$\log _{2}\frac{1}{32}=$

$\log\frac{1}{100}=$

$\log _{5}\frac{1}{5}=$

$\log _{8}\frac{1}{64}=$

Evaluate. Give your answers as fractions.

$36^{\frac{1}{2}}$

$625^{\frac{1}{4}}$

$16^{\frac{1}{2}}$

$8^{-\frac{1}{3}}$

$81^{\frac{1}{2}}$

$125^{-\frac{1}{3}}$

$729^{-\frac{1}{3}}$

$256^{\frac{1}{4}}$

Evaluate. Give your answers as fractions.

$\log_{243}3$

$\log_{32}\frac{1}{2}$

$\log_{36}\frac{1}{6}$

$\log_{25}\frac{1}{5}$

$\log_{729}9$

$\log_{4}\frac{1}{2}$

$\log_{16}\frac{1}{2}$

$\log_{9}3$

$\log_{27}\frac{1}{3}$

$\log_{343}\frac{1}{7}$

$\log_{49}7$

$\log_{25}5$

$\log_{9}\frac{1}{3}$

$\log_{1000}10$

$\log_{64}\frac{1}{2}$