(9.2) What are Logarithms?
Logarithms in base $a$
$2^3=$
$2^4=$
$3^4=$
$5^2=$
$7^3=$
$2^6=$
$4^0=$
$10^3=$
$10^5=$
$\Rightarrow \quad \log_2 8=$
$\Rightarrow \quad \log_2 16=$
$\Rightarrow \quad \log_3 81=$
$\Rightarrow \quad \log_5 25=$
$\Rightarrow \quad \log_7 343=$
$\Rightarrow \quad \log_2 64=$
$\Rightarrow \quad \log_4 1=$
$\Rightarrow \quad \log 1000=$
$\Rightarrow \quad \log 100000=$
Evaluate.
$\log _{2}32=$
$\log _{3}81=$
$\log _{2}4=$
$\log100=$
$\log _{3}9=$
$\log _{5}25=$
$\log _{3}243=$
$\log _{8}8=$
$\log _{9}729=$
$\log _{3}1=$
$\log _{4}64=$
$\log _{6}6=$
$\log _{3}3=$
$\log10000=$
$\log _{6}1=$
$\log _{9}81=$
$\log _{2}1=$
$\log _{7}1=$
$\log _{9}1=$
$\log _{8}1=$
$\log _{4}4=$
$\log _{2}16=$
$\log _{8}512=$
$\log _{2}8=$
Evaluate. Give your answers as fractions.
$2^{-3}$
$3^0$
$6^{-3}$
$6^{-2}$
$8^0$
$2^0$
$3^{-1}$
$2^{-2}$
Evaluate.
$\log _{7}\frac{1}{343}=$
$\log _{5}1=$
$\log _{4}\frac{1}{64}=$
$\log _{7}\frac{1}{49}=$
$\log _{3}1=$
$\log\frac{1}{1000}=$
$\log _{2}\frac{1}{8}=$
$\log _{2}\frac{1}{64}=$
$\log1=$
$\log _{9}1=$
$\log _{8}\frac{1}{512}=$
$\log _{2}\frac{1}{32}=$
$\log\frac{1}{100}=$
$\log _{5}\frac{1}{5}=$
$\log _{8}\frac{1}{64}=$
Evaluate. Give your answers as fractions.
$36^{\frac{1}{2}}$
$625^{\frac{1}{4}}$
$16^{\frac{1}{2}}$
$8^{-\frac{1}{3}}$
$81^{\frac{1}{2}}$
$125^{-\frac{1}{3}}$
$729^{-\frac{1}{3}}$
$256^{\frac{1}{4}}$
Evaluate. Give your answers as fractions.
$\log_{243}3$
$\log_{32}\frac{1}{2}$
$\log_{36}\frac{1}{6}$
$\log_{25}\frac{1}{5}$
$\log_{729}9$
$\log_{4}\frac{1}{2}$
$\log_{16}\frac{1}{2}$
$\log_{9}3$
$\log_{27}\frac{1}{3}$
$\log_{343}\frac{1}{7}$
$\log_{49}7$
$\log_{25}5$
$\log_{9}\frac{1}{3}$
$\log_{1000}10$
$\log_{64}\frac{1}{2}$