itomath.com

(9.2) What are Logarithms?

Logarithms in base $a$

$2^3=$

$2^4=$

$3^4=$

$5^2=$

$7^3=$

$2^6=$

$4^0=$

$10^3=$

$10^5=$

$\Rightarrow \quad \log_2 8=$

$\Rightarrow \quad \log_2 16=$

$\Rightarrow \quad \log_3 81=$

$\Rightarrow \quad \log_5 25=$

$\Rightarrow \quad \log_7 343=$

$\Rightarrow \quad \log_2 64=$

$\Rightarrow \quad \log_4 1=$

$\Rightarrow \quad \log 1000=$

$\Rightarrow \quad \log 100000=$


Evaluate.

$\log _{8}1=$

$\log _{5}125=$

$\log _{6}36=$

$\log _{5}1=$

$\log _{7}343=$

$\log _{9}1=$

$\log _{5}625=$

$\log100=$

$\log _{3}9=$

$\log _{9}81=$

$\log _{3}81=$

$\log _{4}64=$

$\log _{8}512=$

$\log _{4}256=$

$\log _{9}729=$

$\log _{7}49=$

$\log _{4}4=$

$\log _{2}16=$

$\log _{5}25=$

$\log _{5}5=$

$\log _{2}32=$

$\log _{2}8=$

$\log _{6}6=$

$\log _{4}16=$

Evaluate. Give your answers as fractions.

$5^{-3}$

$2^0$

$3^{-2}$

$5^0$

$6^{-2}$

$7^{-3}$

$8^{-2}$

$3^{-3}$

Evaluate.

$\log _{4}\frac{1}{64}=$

$\log _{2}\frac{1}{64}=$

$\log _{7}\frac{1}{7}=$

$\log _{5}\frac{1}{25}=$

$\log _{6}\frac{1}{216}=$

$\log _{5}\frac{1}{125}=$

$\log\frac{1}{1000}=$

$\log\frac{1}{100}=$

$\log1=$

$\log _{7}1=$

$\log _{5}\frac{1}{625}=$

$\log _{4}1=$

$\log _{9}1=$

$\log _{3}\frac{1}{243}=$

$\log _{4}\frac{1}{16}=$

Evaluate. Give your answers as fractions.

$1000^{-\frac{1}{3}}$

$81^{\frac{1}{4}}$

$32^{-\frac{1}{5}}$

$625^{\frac{1}{4}}$

$16^{-\frac{1}{2}}$

$64^{-\frac{1}{2}}$

$16^{\frac{1}{2}}$

$32^{\frac{1}{5}}$

Evaluate. Give your answers as fractions.

$\log_{16}2$

$\log_{216}6$

$\log_{27}\frac{1}{3}$

$\log_{81}\frac{1}{9}$

$\log_{8}2$

$\log_{64}\frac{1}{4}$

$\log_{512}\frac{1}{8}$

$\log_{100}10$

$\log_{36}\frac{1}{6}$

$\log_{625}\frac{1}{5}$

$\log_{729}\frac{1}{9}$

$\log_{125}5$

$\log_{4}2$

$\log_{1000}\frac{1}{10}$

$\log_{243}\frac{1}{3}$