Mixed Practice
Find the general term, $u_n$, for the following sequences.
*For arithmetic sequences, write your answer in the form: $an+b$
*For geometric sequences, write your answer in the form: $a\left(b\right)^{n-1}$
*For quadratic sequences, write your answer in the form: $an^2+bn+c$
a)
$4,2,0,-2,\ldots \qquad u_n=$
Check
b)
$1,8,21,40,65,\ldots \qquad u_n=$
Check
c)
$3,7,11,15,\ldots \qquad u_n=$
Check
d)
$-4,-2,6,20,40,\ldots \qquad u_n=$
Check
e)
$9,15,25,39,57,79,\ldots \qquad u_n=$
Check
f)
$-24,-12,-6,-3,\ldots \qquad u_n=$
Check
g)
$3,-16,-47,-90,-145,\ldots \qquad u_n=$
Check
h)
$-4,-5,-8,-13,-20,-29,\ldots \qquad u_n=$
Check
i)
$9,27,81,243,\ldots \qquad u_n=$
Check
j)
$-5,-1,3,7,\ldots \qquad u_n=$
Check
k)
$-\frac{11}{2},-4,-\frac{3}{2},2,\frac{13}{2},\ldots \qquad u_n=$
Check
l)
$\frac{4}{3},\frac{2}{3},\frac{1}{3},\frac{1}{6},\ldots \qquad u_n=$
Check
m)
$1,\frac{7}{4},3,\frac{19}{4},7,\ldots \qquad u_n=$
Check
n)
$5\frac{11}{12},5\frac{2}{3},5\frac{5}{12},5\frac{1}{6},\ldots \qquad u_n=$
Check
o)
$0.5,0.45,0.405,\ldots \qquad u_n=$
Check
p)
$-2,8,28,58,98,\ldots \qquad u_n=$
Check
q)
$-1\frac{1}{2},1,4\frac{1}{2},9,14\frac{1}{2},\ldots \qquad u_n=$
Check
r)
$-4,-2,12,44,100,186,\ldots \qquad u_n=$
Check
s)
$8,13,21,34,54,83,\ldots \qquad u_n=$
Check
t)
$1,2,9,64,625,\ldots \qquad u_n=$
Check