itomath.com

(26) Review

Mixed Practice

Find the general term, $u_n$, for the following sequences.
*For arithmetic sequences, write your answer in the form: $an+b$
*For geometric sequences, write your answer in the form: $a\left(b\right)^{n-1}$
*For quadratic sequences, write your answer in the form: $an^2+bn+c$

a) $4,2,0,-2,\ldots \qquad u_n=$

b) $1,8,21,40,65,\ldots \qquad u_n=$

c) $3,7,11,15,\ldots \qquad u_n=$

d) $-4,-2,6,20,40,\ldots \qquad u_n=$

e) $9,15,25,39,57,79,\ldots \qquad u_n=$

f) $-24,-12,-6,-3,\ldots \qquad u_n=$

g) $3,-16,-47,-90,-145,\ldots \qquad u_n=$

h) $-4,-5,-8,-13,-20,-29,\ldots \qquad u_n=$

i) $9,27,81,243,\ldots \qquad u_n=$

j) $-5,-1,3,7,\ldots \qquad u_n=$

k) $-\frac{11}{2},-4,-\frac{3}{2},2,\frac{13}{2},\ldots \qquad u_n=$

l) $\frac{4}{3},\frac{2}{3},\frac{1}{3},\frac{1}{6},\ldots \qquad u_n=$

m) $1,\frac{7}{4},3,\frac{19}{4},7,\ldots \qquad u_n=$

n) $5\frac{11}{12},5\frac{2}{3},5\frac{5}{12},5\frac{1}{6},\ldots \qquad u_n=$

o) $0.5,0.45,0.405,\ldots \qquad u_n=$

p) $-2,8,28,58,98,\ldots \qquad u_n=$

q) $-1\frac{1}{2},1,4\frac{1}{2},9,14\frac{1}{2},\ldots \qquad u_n=$

r) $-4,-2,12,44,100,186,\ldots \qquad u_n=$

s) $8,13,21,34,54,83,\ldots \qquad u_n=$

t) $1,2,9,64,625,\ldots \qquad u_n=$

Suggested Practice

Review Set 26A and 26B on P.544