(28A) Rational exponents
Evaluate. Give your answers as fractions.
$243^{\frac{1}{5}}$
$1000^{-\frac{1}{3}}$
$100^{\frac{1}{2}}$
$36^{-\frac{1}{2}}$
$49^{-\frac{1}{2}}$
$81^{\frac{1}{4}}$
$32^{\frac{1}{5}}$
$216^{-\frac{1}{3}}$
$64^{\frac{1}{3}}$
$256^{\frac{1}{4}}$
$81^{-\frac{1}{4}}$
$25^{-\frac{1}{2}}$
$16^{\frac{1}{4}}$
$64^{-\frac{1}{6}}$
$343^{-\frac{1}{3}}$
$64^{\frac{1}{2}}$
$64^{-\frac{1}{2}}$
$256^{-\frac{1}{4}}$
$4^{-\frac{1}{2}}$
$81^{-\frac{1}{2}}$
$16^{-\frac{1}{2}}$
$216^{\frac{1}{3}}$
$32^{-\frac{1}{5}}$
$243^{-\frac{1}{5}}$
Evaluate. Give your answers as fractions.
$\left(\frac{343}{1000}\right)^{-\frac{2}{3}}=$
$\left(\frac{49}{4}\right)^{\frac{1}{2}}=$
$\left(\frac{729}{512}\right)^{\frac{1}{3}}=$
$\left(\frac{27}{512}\right)^{\frac{2}{3}}=$
$\left(\frac{512}{125}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{4}\right)^{-\frac{1}{2}}=$
$\left(\frac{343}{64}\right)^{\frac{2}{3}}=$
$\left(\frac{1}{16}\right)^{\frac{1}{2}}=$
$\left(\frac{125}{512}\right)^{-\frac{1}{3}}=$
$\left(\frac{64}{81}\right)^{-\frac{1}{2}}=$
$\left(\frac{125}{343}\right)^{\frac{1}{3}}=$
$\left(\frac{1}{81}\right)^{-\frac{1}{4}}=$
$\left(\frac{729}{512}\right)^{\frac{2}{3}}=$
$\left(\frac{1}{32}\right)^{\frac{1}{5}}=$
$\left(\frac{9}{100}\right)^{\frac{1}{2}}=$
$\left(\frac{729}{1000}\right)^{-\frac{2}{3}}=$
$\left(\frac{25}{9}\right)^{-\frac{1}{2}}=$
$\left(\frac{125}{512}\right)^{-\frac{2}{3}}=$
$\left(\frac{27}{64}\right)^{-\frac{2}{3}}=$
$\left(\frac{64}{9}\right)^{-\frac{1}{2}}=$
$\left(\frac{36}{49}\right)^{-\frac{1}{2}}=$
Exercises
(28A on P.567) #1-2 all; #3cdg, #4 all