itomath.com

Chapter 19: Introduction to Functions

(19A) Mapping Diagrams (19C) Function Notation (19B) Domain and Range worksheet and textbook only (23B) Inverse Functions (19D) Composite Functions Sketching Graphs Graphical Solutions

Extension Problems

State the domain for the following function. $$f\left(x\right)=\frac{1}{1-\frac{1}{1+\frac{1}{1-\frac{1}{1-\frac{1}{x+1}}}}}$$ Domain: $\bigl\{x|x\ne$ $,x\in \mathbb{R}\bigl\}$

For $\displaystyle f\left(x\right)=\frac{3x+a}{x+b}, f^{-1}\left(1\right)=3$ and $f^{-1}\left(-7\right)=-1$. Find the values of $a$ and $b$.

$a=$ $, b=$

Let $\displaystyle f\left(x\right)=\frac{ax+b}{cx-d}\; \left(d\ne 0\right)$ and $\displaystyle g\left(x\right)=\frac{-2x+3}{x-1}$. If $f\left(g\left(x\right)\right)=x$, find $f\left(x\right)$.

$f\left(x\right)=$

For $f\left(x\right)=2ax-5a^2$, find the value(s) of $a$ such that $f^{-1}\left(x\right)=f\left(x\right)$.

$a=$