itomath.com

Chapter 21: Quadratic Equations and Functions

(21A) Quadratic Equations worksheet and textbook only (21B) The Null Factor Law (21C) The Quadratic Formula worksheet and textbook only (21D) Quadratic Functions worksheet and textbook only (21E) Graphs of Quadratic Functions (21E) Graphs of Quadratic Functions in the form $f\left(x\right)=\left(x-h\right)^2+k$ (21E) Graphs of Quadratic Functions in the form $f\left(x\right)=a\left(x-h\right)^2+k$ (21E+) Completing the Square $x^2+bx+c\rightarrow \left(x-h\right)^2+k$ (21E+) Completing the Square $ax^2+bx+c\rightarrow a\left(x-h\right)^2+k$ (21F) Axes Intercepts worksheet and textbook only (21E+) Factored Form $f\left(x\right)=a\left(x-p\right)\left(x-q\right)$ (21E+) Factored Form $f\left(x\right)=a\left(x-p\right)^2$ (21G) Line of Symmetry and Vertex (21H) Finding a Quadratic Function

Extension Problems

Solve for $𝑥$. If there are multiple answers, separate them with commas. Give answers as fractions and not decimals.

$\frac{3}{10000}x^2-\frac{7}{100}x+4=0$

$\left(x+3\right)^2=\frac{x+3}{2}+3$

$x^2-\left(\sqrt{2}+\sqrt{3}\right)x+\sqrt{6}=0$

$x^2-\left(a-2\right)x-2a=0$ (where $a$ is a constant)

$ax^2-\left(a+b\right)x+b=0$ (where $a$ and $b$ are constants)

$\left(a-1\right)x^2-\left(a^2-1\right)x=0$ (where $a$ is a constant)

The quadratic equation $x^2+2ax-3a=0$ has 2 solutions. One of the solutions is $x=-3$. Find $a$ and the other value of $x$.

$a=$

$x=$

If the quadratic equation $x^2-ax+24=0$ has 2 integer solutions, what is the minimum value of $a$? Assume $a$ is positive.

$a=$

The quadratic equation $x^2+2ax+a^2-4=0$ has 2 solutions. The difference between the two solutions is $4$ and one solution is $5$ times greater than the other solution. Find the value of $a$ and the two values of $x$ (separate them with a comma).

$a=$

$x=$
The graph of the function $f\left(x\right)=2x^2+px+q$ passes through the point $\left(1,3\right)$ and its vertex lies on the line $y=2x-3$.
Find the two sets of values of $p$ and $q$.

$p=$ $, q=$ or $p=$ $, q=$
The graphs of the functions $f\left(x\right)=-2x^2+\left(a+6\right)x-b$ and $g\left(x\right)=3x^2-3\left(b-1\right)x+7a+1$ share the same vertex.
Find the two sets of values of $a$ and $b$.

$a=$ $, b=$ or $a=$ $, b=$
A piece of wire of length $22$cm is cut into two pieces. One piece is bent in to an equilateral triangle and the other piece is bent into a square. Let $A$ be the sum of the areas of triangle and square. Find the length of the sides of the square that gives the minimum value of $A$.

Give your answer to $3$ decimal places: cm

Extension Problems (from Chapter 1: Expansion and Factorization)

Factorization Extension Level 2

Fully factorize.

$ax^2-\left(a+2\right)x+2$

$x^2-\left(a+1\right)x+a$

$ax^2+\left(2a-1\right)x-2$

$abx^2+\left(a+b\right)x+1$

$ax^2-\left(1+ab\right)x+b$

$abx^2+\left(2a^2-b^2\right)x-2ab$

Factorization Extension Level 3

Fully factorize.

$\left(x+y\right)^2+\left(x+y\right)-2$

$\left(a-b\right)^2-3\left(a-b\right)-10$

$\left(x+y\right)^2-4\left(x-y\right)^2$

$\left(x^2+x\right)^2+3\left(x^2+x\right)-10$

Factorization Extension Level 4

Fully factorize.

$a^2\left(x^2-a^2\right)-b^2\left(x^2-b^2\right)$

$2x^2-xy-y^2-7x+y+6$

$2x^2+xy-6y^2-4x-y+2$

$x^2-y^2-z^2+2yz$

$x-y-x^2+2xy-y^2+2$

$a^2b-2abc-b-ab^2+a-2c$

$x^3-\left(b-1\right)x^2+abx-ab\left(b-1\right)$

$a^2-ab+ac-2bc-2c^2$

$x^3+\left(a+2\right)x^2+\left(2a+1\right)x+a$

$x^3+3x^2y-3y-x$

$a^2b-ab^2-a^2c-ac^2-b^2c+bc^2+2abc$