itomath.com

(28A) Rational exponents


Evaluate. Give your answers as fractions.

$729^{-\frac{1}{3}}$

$32^{-\frac{1}{5}}$

$36^{-\frac{1}{2}}$

$216^{-\frac{1}{3}}$

$512^{-\frac{1}{3}}$

$64^{-\frac{1}{6}}$

$16^{\frac{1}{2}}$

$343^{\frac{1}{3}}$

$625^{-\frac{1}{4}}$

$32^{\frac{1}{5}}$

$64^{\frac{1}{3}}$

$64^{-\frac{1}{3}}$

$81^{-\frac{1}{2}}$

$64^{-\frac{1}{2}}$

$27^{\frac{1}{3}}$

$100^{-\frac{1}{2}}$

$9^{-\frac{1}{2}}$

$8^{-\frac{1}{3}}$

$16^{-\frac{1}{2}}$

$512^{\frac{1}{3}}$

$256^{\frac{1}{4}}$

$4^{-\frac{1}{2}}$

$4^{\frac{1}{2}}$

$49^{\frac{1}{2}}$

Evaluate. Give your answers as fractions.

$\left(\frac{125}{729}\right)^{\frac{2}{3}}=$
$\left(\frac{27}{1000}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{81}\right)^{\frac{1}{4}}=$

$\left(\frac{64}{27}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{729}\right)^{\frac{1}{3}}=$
$\left(\frac{1}{27}\right)^{-\frac{1}{3}}=$

$\left(\frac{1}{125}\right)^{-\frac{1}{3}}=$
$\left(\frac{81}{16}\right)^{-\frac{3}{4}}=$
$\left(\frac{25}{36}\right)^{\frac{1}{2}}=$

$\left(\frac{100}{9}\right)^{-\frac{1}{2}}=$
$\left(\frac{81}{64}\right)^{-\frac{1}{2}}=$
$\left(\frac{1}{512}\right)^{-\frac{1}{3}}=$

$\left(\frac{81}{100}\right)^{-\frac{1}{2}}=$
$\left(\frac{729}{1000}\right)^{-\frac{1}{3}}=$
$\left(\frac{1000}{729}\right)^{\frac{1}{3}}=$

$\left(\frac{100}{81}\right)^{\frac{1}{2}}=$
$\left(\frac{9}{64}\right)^{\frac{1}{2}}=$
$\left(\frac{1}{8}\right)^{\frac{2}{3}}=$

$\left(\frac{4}{25}\right)^{\frac{1}{2}}=$
$\left(\frac{1}{8}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{27}\right)^{\frac{1}{3}}=$

Exercises

(28A on P.567) #1-2 all; #3cdg, #4 all