(28A) Rational exponents
Evaluate. Give your answers as fractions.
$729^{-\frac{1}{3}}$
$32^{-\frac{1}{5}}$
$36^{-\frac{1}{2}}$
$216^{-\frac{1}{3}}$
$512^{-\frac{1}{3}}$
$64^{-\frac{1}{6}}$
$16^{\frac{1}{2}}$
$343^{\frac{1}{3}}$
$625^{-\frac{1}{4}}$
$32^{\frac{1}{5}}$
$64^{\frac{1}{3}}$
$64^{-\frac{1}{3}}$
$81^{-\frac{1}{2}}$
$64^{-\frac{1}{2}}$
$27^{\frac{1}{3}}$
$100^{-\frac{1}{2}}$
$9^{-\frac{1}{2}}$
$8^{-\frac{1}{3}}$
$16^{-\frac{1}{2}}$
$512^{\frac{1}{3}}$
$256^{\frac{1}{4}}$
$4^{-\frac{1}{2}}$
$4^{\frac{1}{2}}$
$49^{\frac{1}{2}}$
Evaluate. Give your answers as fractions.
$\left(\frac{125}{729}\right)^{\frac{2}{3}}=$
$\left(\frac{27}{1000}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{81}\right)^{\frac{1}{4}}=$
$\left(\frac{64}{27}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{729}\right)^{\frac{1}{3}}=$
$\left(\frac{1}{27}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{125}\right)^{-\frac{1}{3}}=$
$\left(\frac{81}{16}\right)^{-\frac{3}{4}}=$
$\left(\frac{25}{36}\right)^{\frac{1}{2}}=$
$\left(\frac{100}{9}\right)^{-\frac{1}{2}}=$
$\left(\frac{81}{64}\right)^{-\frac{1}{2}}=$
$\left(\frac{1}{512}\right)^{-\frac{1}{3}}=$
$\left(\frac{81}{100}\right)^{-\frac{1}{2}}=$
$\left(\frac{729}{1000}\right)^{-\frac{1}{3}}=$
$\left(\frac{1000}{729}\right)^{\frac{1}{3}}=$
$\left(\frac{100}{81}\right)^{\frac{1}{2}}=$
$\left(\frac{9}{64}\right)^{\frac{1}{2}}=$
$\left(\frac{1}{8}\right)^{\frac{2}{3}}=$
$\left(\frac{4}{25}\right)^{\frac{1}{2}}=$
$\left(\frac{1}{8}\right)^{-\frac{1}{3}}=$
$\left(\frac{1}{27}\right)^{\frac{1}{3}}=$
Exercises
(28A on P.567) #1-2 all; #3cdg, #4 all