itomath.com

Chapter 6: Exponents and Surds

(6) Highest common factor and lowest common multiple (6A) Exponent or index notation (6B) Exponent or index laws (6C) Zero and negative indices (28A) Rational exponents (6D) Standard form (6E) Surds (6F) Properties of surds (6G) Multiplication of surds (6H) Division by surds

Extension Problems

Without listing all the factors, can you find how many factors each number has?
a) 2401
b) 168
c) 1764

a)

b)

c)

Simplify.
$\left(x^\frac{1}{a-b}\right)^\frac{1}{a-c} \left(x^\frac{1}{b-c}\right)^\frac{1}{b-a} \left(x^\frac{1}{c-a}\right)^\frac{1}{c-b}$

If $x^\frac{1}{2}+x^{-\frac{1}{2}}=a$, write $x^2+x^{-2}$ in terms of $a$.

Find the solution that is not $x=0$ or $x=1$ for the following:
$$\left(\sqrt[4]{x}\right)^{4x^4}=\left(x^4\right)^{4\sqrt[4]{x}}$$
Give your answer as an exponent.

$x=$

Solve for $x$.
$4^{\sqrt{x^2-2}+x}-5\cdot2^{x-1+\sqrt{x^2-2}}=6$

$x=$
How many digits does $8^5 \times 5^{10} \times 15^5$ have when evaluated?

Solve for $x$. $$3^x=x^9$$

$x=$